The OEIS is supported by the many generous donors to the OEIS Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186434 Number of isosceles triangles that can be formed from the n^2 points of n X n grid of points (or geoboard). 18
0, 4, 36, 148, 444, 1064, 2200, 4024, 6976, 11284, 17396, 25620, 36812, 51216, 69672, 92656, 121392, 156092, 198364, 248292, 307988, 377816, 459072, 552216, 660704, 784076, 924340, 1082228, 1261132, 1460408, 1684464, 1931800, 2208368 (list; graph; refs; listen; history; text; internal format)



This counts triples of distinct points A,B,C such that A,B,C are the vertices of an isosceles triangle with nonzero area. It would be nice to have a formula. - N. J. A. Sloane, Apr 22 2016

Place all bounding boxes of A279413 that will fit into the n X n grid in all possible positions, and the proper rectangles in two orientations: a(n) = sum(i=1..n, sum(j=1..i, k * (n-i+1) * (n-j+1) * A279413(i,j) where k=1 when i=j and k=2 otherwise. Lars Blomberg, Feb 20 2017


Lars Blomberg, Table of n, a(n) for n = 1..10000 (the first 67 terms from Nathaniel Johnston)

Barile, Margherita: MathWorld -- Geoboard.

Nathaniel Johnston, C program for computing terms



IsTriangle:=proc(points) local a, b, c; a:=points[3]-points[2]: b:=points[3]-points[1]: c:=points[2]-points[1]: if evalf(norm(a, 2)+norm(b, 2))>evalf(norm(c, 2)) and evalf(norm(a, 2)+norm(c, 2))>evalf(norm(b, 2)) and evalf(norm(b, 2)+norm(c, 2))>evalf(norm(a, 2)) then true: else false: fi: end:

IsIsoscelesTriangle:=proc(points) local a, b, c; a:=points[3]-points[2]: b:=points[3]-points[1]: c:=points[2]-points[1]: if IsTriangle(points) then if norm(a, 2)=norm(b, 2) or norm(a, 2)=norm(c, 2) or norm(b, 2)=norm(c, 2) then true: else false: fi: else false: fi; end:

a:=proc(n) local P, TriangleSet, i, j, a, b, c; P:=[]: for i from 0 to n do for j from 0 to n do P:=[op(P), [i, j]]: od; od; TriangleSet:={}: for a from 1 to nops(P) do for b from a+1 to nops(P) do for c from b+1 to nops(P) do if IsIsoscelesTriangle([P[a], P[b], P[c]]) then TriangleSet:={op(TriangleSet), [P[a], P[b], P[c]]}; fi; od; od; od; return(nops(TriangleSet)): end:


Cf. A045996, A077435, A187452, A189416, A271910-A271913, A271915, A279413, A279414.

Dividing by 4 gives A271908.

Sequence in context: A069053 A193282 A192217 * A270989 A272557 A276295

Adjacent sequences: A186431 A186432 A186433 * A186435 A186436 A186437




Martin Renner, Apr 10 2011, Apr 13 2011


a(10) - a(33) from Nathaniel Johnston, Apr 25 2011



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)