This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186391 a(n) equals the least sum of the squares of the coefficients in (1 + x^k + x^(2k) + x^p)^n found at sufficiently large p for some fixed k>0. 3
 1, 4, 32, 340, 4096, 52704, 705956, 9717488, 136443904, 1945097296, 28063032832, 408836809088, 6004266204964, 88779091937488, 1320294416004736, 19733192546306640, 296219343194357760, 4463668854432401280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Equivalently, a(n) equals the sum of the squares of the coefficients in the polynomial: (1+x+x^2 + x^p)^n for all p>2(n+1). ... More generally, let B(x) = Sum_{n>=0} b(n)*x^n/n!^2 such that b(n) is the least sum of the squares of the coefficients in (F(x^k) + t*x^p)^n where F(x) is a finite polynomial in x with degree d and p>(n+1)dk for some fixed k>0, then B(x) = [Sum_{n>=0} (t^2*x)^n/n!^2]*[Sum_{n>=0} c(n)/n!^2] where c(n) equals the sum of the squares of the coefficients in the polynomial F(x)^n. LINKS FORMULA (1) a(n) = Sum_{k=0..n} C(n,k)^2*A082758(k). Let g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2, then (2) A(x) = [Sum_{n>=0} x^n/n!^2]*[Sum_{n>=0} A082758(n)*x^n/n!^2] where A082758(n) is the sum of the squares of the trinomial coefficients in (1+x+x^2)^n. EXAMPLE G.f.: A(x) = 1 + 4*x + 32*x^2/2!^2 + 340*x^3/3!^2 + 4096*x^4/4!^2 +... The g.f. may be expressed as: A(x) = [Sum_{n>=0} x^n/n!^2] * C(x) where C(x)= 1 + 3*x + 19*x^2/2!^2 + 141*x^3/3!^2 + 1107*x^4/4!^2 + 8953*x^5/5!^2 + 73789*x^6/6!^2 +...+ A082758(n)*x^n/n!^2 +... PROG (PARI) {a(n)=local(V=Vec((1+x+x^2+x^(2*n+3))^n)); V*V~} (PARI) {a(n)=sum(k=0, n, binomial(n, k)^2*sum(j=0, k, binomial(2*k-j, j)*binomial(2*k, j)))} (PARI) {a(n)=n!^2*polcoeff(sum(m=0, n, x^m/m!^2+x*O(x^n)) *sum(m=0, n, sum(k=0, m, binomial(2*m-k, k)*binomial(2*m, k))*x^m/m!^2), n)} CROSSREFS Cf. A082758, A186392, A186378. Sequence in context: A099912 A002005 A123309 * A137432 A177750 A224993 Adjacent sequences:  A186388 A186389 A186390 * A186392 A186393 A186394 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 19 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .