%I #10 Dec 24 2021 14:37:05
%S 5,21,29,45,69,77,101,125,149,165,189,197,221,237,261,269,309,357,365,
%T 381,429,437,461,477,485,501,597,605,629,645,717,725,741,749,821,837,
%U 861,885,909,917,965,981,989,1029
%N A007522(n)-2.
%C Extensions to Fermat’s Little Theorem precisely indicate a composite or prime number. See A186293 for an introduction to A186293-A186305.
%C The sequence shows p-2 where p are the primes == 7 (mod 8).
%C (k*p+(p-2)) ^ (j*(p-1)+1) == (k*p+((p-1)/2)) ^ (j*(p-1)+(p-2)) == p-2 (mod p).
%H Harvey P. Dale, <a href="/A186304/b186304.txt">Table of n, a(n) for n = 1..1000</a>
%t Select[Prime[Range[200]],Mod[#,8]==7&]-2 (* _Harvey P. Dale_, Dec 24 2021 *)
%K nonn
%O 1,1
%A _Marco Matosic_, Feb 17 2011