The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186292 E.g.f. A(x) satisfies the property that the coefficient of x^n in the (2*n)-th iterations of e.g.f. A(x), for n>=1, begins with [1,4] and continues with all zeros thereafter. 2
 1, 2, -30, 1008, -50760, 3227400, -232071840, 17196863040, -1246907208960, 104187854836800, -13090506064574400, 191142937964563200, 646777849055450112000, 339995571993104227200000, -227122463058126580264320000, -361611207685046931735771648000, 110410149903015181792955526144000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE G.f.: A(x) = x + 2*x^2/2! - 30*x^3/3! + 1008*x^4/4! - 50760*x^5/5! + 3227400*x^6/6! - 232071840*x^7/7! + 17196863040*x^8/8! +... Coefficients of x^k/k! in the even iterations of the g.f. A(x) begin: n=2: [1, 4, -48, 1440, -65280, 3628800,-209986560, 9686476800, ...]; n=4: [1, 8, -48, 1152, -40320, 1336320, 11934720,-11065098240, ...]; n=6: [1, 12, 0, 288, -5760, -518400, 106444800,-11752151040, ...]; n=8: [1, 16, 96, 0, 3840, -691200, 67737600, -3261726720, ...]; n=10:[1, 20, 240, 1440, 0, -288000, 13870080, 1614735360, ...]; n=12:[1, 24, 432, 5760, 40320, 0, -10644480, 1403781120, ...]; n=14:[1, 28, 672, 14112, 228480, 2661120, 0, -1079285760, ...]; n=16:[1, 32, 960, 27648, 714240, 16128000, 279982080, 0, ...]; ... where the main diagonal consists of all zeros for n>2. PROG (PARI) {ITERATE(n, F)=local(G=x); for(i=1, n, G=subst(G, x, F)); G} {a(n)=local(A=[1, 2]); for(m=3, n, A=concat(A, 0); A[#A]=-(#A-1)!/2*Vec(ITERATE(2*(#A), sum(k=1, #A-1, A[k]*x^k/k!)+x*O(x^#A)))[#A]); A[n]} for(n=1, 20, print1(a(n), ", ")) CROSSREFS Cf. A228508, A210723. Sequence in context: A082653 A332231 A274389 * A273661 A322624 A338044 Adjacent sequences: A186289 A186290 A186291 * A186293 A186294 A186295 KEYWORD sign AUTHOR Paul D. Hanna, Aug 29 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 30 14:06 EST 2023. Contains 359945 sequences. (Running on oeis4.)