login
Expansion of 2F1( 1/2, 3/2; 4; 16*x ).
1

%I #24 Jul 27 2022 06:23:05

%S 1,3,18,140,1260,12474,132132,1472328,17065620,204155380,2506399896,

%T 31443925968,401783498480,5215458874500,68633685693000,

%U 914099013896400,12304253831789700,167193096184907100,2291164651422801000,31637804708163654000,439903041116118980400

%N Expansion of 2F1( 1/2, 3/2; 4; 16*x ).

%C Combinatorial interpretation welcome.

%C Could involve planar maps, lattice walks, interpretations of catalan numbers.

%H Indranil Ghosh, <a href="/A186266/b186266.txt">Table of n, a(n) for n = 0..800</a>

%H H. Franzen, T. Weist, <a href="https://arxiv.org/abs/1608.03419">The Value of the Kac Polynomial at One</a>, arXiv preprint arXiv:1608.03419 [math.RT], 2016.

%F a(n) = 3*A000108(n)*A000108(n+1)*(n+1)/(n+3). - _David Scambler_, Aug 18 2012

%F D-finite with recurrence n*(n+3)*a(n) -4*(2*n-1)*(2*n+1)*a(n-1)=0. - _R. J. Mathar_, Jun 17 2016

%t CoefficientList[

%t Series[HypergeometricPFQ[{1/2, 3/2}, {4}, 16*x], {x, 0, 20}], x]

%t Table[3 CatalanNumber[n] CatalanNumber[n+1] * (n+1) / (n+3), {n, 0, 20}] (* _Indranil Ghosh_, Mar 05 2017 *)

%o (PARI)

%o c(n) = binomial(2*n,n) / (n+1);

%o a(n) = 3 * c(n) * c(n+1) *(n+1) / (n+3); \\ _Indranil Ghosh_, Mar 05 2017

%o (Python)

%o import math

%o f=math.factorial

%o def C(n,r): return f(n) / f(r) / f(n-r)

%o def Catalan(n): return C(2*n, n) / (n+1)

%o def A186266(n): return 3 * Catalan(n) * Catalan(n+1) * (n+1) / (n+3) # _Indranil Ghosh_, Mar 05 2017

%Y Formula close to A000257, A000888, A172392.

%K nonn,easy

%O 0,2

%A _Olivier GĂ©rard_, Feb 16 2011