The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186257 a(n) = 5*b_5(n)+4, where b_5 lists the indices of zeros of the sequence A261305: u(n) = abs(u(n-1)-gcd(u(n-1),5*n-1)), u(1) = 1. 0
14, 89, 479, 2879, 17099, 99839, 599009, 3592859, 21557099, 129336149, 775914479, 4655486369, 27932918219, 167597509319, 1005582321329, 6033492323549, 36200953941059, 217205705087639, 1303234230378959, 7819405361540219 (list; graph; refs; listen; history; text; internal format)



For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=5 it appears a(n) is prime for n>=2.

See A261305 for the sequence u relevant here (m=5). - M. F. Hasler, Aug 14 2015


Table of n, a(n) for n=1..20.

B. Cloitre, 10 conjectures in additive number theory, preprint arxiv:2011.4274 (2011).

M. F. Hasler, Rowland-CloƮtre type prime generating sequences, OEIS Wiki, August 2015.


We conjecture that a(n) is asymptotic to c*6^n with c>0.

See the wiki link for a sketch of a proof of this conjecture. More precisely we find c = 1.15917467761... - M. F. Hasler, Aug 22 2015


(PARI) a=1; m=5; for(n=2, 1e7, a=abs(a-gcd(a, m*n-1)); if(a==0, print1(m*n+m-1, ", ")))

(PARI) m=5; a=k=1; for(n=1, 25, while( a>D=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[, 1])), a-=D+gcd(a-D, N); k+=1+D); k+=a+1; print1(a=N, ", ")) \\ M. F. Hasler, Aug 22 2015


Cf. A106108.

Cf. A261301 - A261310; A186253 - A186263.

Sequence in context: A255535 A034544 A248060 * A241305 A195267 A077538

Adjacent sequences:  A186254 A186255 A186256 * A186258 A186259 A186260




Benoit Cloitre, Feb 16 2011


Edited by M. F. Hasler, Aug 14 2015

More terms from M. F. Hasler, Aug 22 2015



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 07:07 EST 2020. Contains 331168 sequences. (Running on oeis4.)