login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186257 a(n) = 5*b_5(n)+4, where b_5 lists the indices of zeros of the sequence A261305: u(n) = abs(u(n-1)-gcd(u(n-1),5*n-1)), u(1) = 1. 0
14, 89, 479, 2879, 17099, 99839, 599009, 3592859, 21557099, 129336149, 775914479, 4655486369, 27932918219, 167597509319, 1005582321329, 6033492323549, 36200953941059, 217205705087639, 1303234230378959, 7819405361540219 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=5 it appears a(n) is prime for n>=2.

See A261305 for the sequence u relevant here (m=5). - M. F. Hasler, Aug 14 2015

LINKS

Table of n, a(n) for n=1..20.

B. Cloitre, 10 conjectures in additive number theory, preprint arxiv:2011.4274 (2011).

M. F. Hasler, Rowland-CloƮtre type prime generating sequences, OEIS Wiki, August 2015.

FORMULA

We conjecture that a(n) is asymptotic to c*6^n with c>0.

See the wiki link for a sketch of a proof of this conjecture. More precisely we find c = 1.15917467761... - M. F. Hasler, Aug 22 2015

PROG

(PARI) a=1; m=5; for(n=2, 1e7, a=abs(a-gcd(a, m*n-1)); if(a==0, print1(m*n+m-1, ", ")))

(PARI) m=5; a=k=1; for(n=1, 25, while( a>D=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[, 1])), a-=D+gcd(a-D, N); k+=1+D); k+=a+1; print1(a=N, ", ")) \\ M. F. Hasler, Aug 22 2015

CROSSREFS

Cf. A106108.

Cf. A261301 - A261310; A186253 - A186263.

Sequence in context: A255535 A034544 A248060 * A241305 A195267 A077538

Adjacent sequences:  A186254 A186255 A186256 * A186258 A186259 A186260

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Feb 16 2011

EXTENSIONS

Edited by M. F. Hasler, Aug 14 2015

More terms from M. F. Hasler, Aug 22 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 07:07 EST 2020. Contains 331168 sequences. (Running on oeis4.)