%I
%S 2,3,4,7,8,12,14,17,18,19,22,28,33,38,39,47,52,53,59,64,67,74,77,78,
%T 82,84,103,108,113,124,127,129,138,143,144,147,148,152,157,162,169,
%U 182,183,203,214,217,218,238,239,242,248,249,259,262,264,267,269
%N Numbers n such that 6n5 and 6n1 are both primes.
%C Numbers n such that 6n5 and 6n1 are cousin primes. The D = 2 numbers in class II, from page 3 of Weber.  _Jonathan Vos Post_, Feb 14 2011
%H Ivan Neretin, <a href="/A186243/b186243.txt">Table of n, a(n) for n = 1..10000</a>
%H H. J. Weber, <a href="http://arxiv.org/abs/1102.3075">Exceptional Prime Number Twins, Triplets and Multiplets</a>, arXiv:1102.3075 [math.NT], 2011.
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/CousinPrimes.html">Cousin Primes.</a>
%F {n such that 6*n5 is in A023200} = {n such that 6*n1 is in A046132}.
%e a(3) = 4 because 6*45 = 19 is prime, and 6*41 = 23 is prime.
%t Select[Range[400], PrimeQ[6#5] && PrimeQ[6#1] &] (* _Alonso del Arte_, Feb 16 2011 *)
%Y Cf. A023200, A046132, A088765.
%K nonn,easy
%O 1,1
%A _Jonathan Vos Post_, Feb 15 2011
