login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186241 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^4 + x^3*A(x)^6. 11
1, 1, 3, 12, 54, 262, 1337, 7072, 38426, 213197, 1202795, 6879160, 39794416, 232429030, 1368806610, 8118934656, 48458809586, 290832756606, 1754059333738, 10625545472716, 64620970743082, 394409682103262, 2415084675723048, 14832185219521152, 91339478577683664 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Nathan Gabriel, Katherine Peske, Lara Pudwell, and Samuel Tay, Pattern avoidance in ternary trees J. Integer Seq. 15 (2012), no. 1, Article 12.1.5, 20 pp.
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = 1/(2*n-1)*Sum_{j=0..2*n-1} binomial(2*n-1,j)*Sum_{i=j..n+j-1} binomial(j,i-j)*binomial(2*n-j-1,3*j-3*n-i+1))), n>0.
From Paul D. Hanna, Nov 11 2011: (Start)
G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x/(1 + x + x^2 + x^3)^2 ) ).
(2) A( x/(1 + x + x^2 + x^3)^2 ) = 1 + x + x^2 + x^3.
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = g.f. of A036765 (number of rooted trees with a degree constraint).
(4) a(n) = [x^n] (1 + x + x^2 + x^3)^(2*n+1) / (2*n+1).
(5) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * [Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^(2*k)] ).
(6) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * [(1-x*A(x)^2)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^(2*k) )] ).
(End)
From Peter Bala, Jun 21 2015: (Start)
a(n) = 1/(2*n + 1)*Sum_{k = 0..floor(n/2)} binomial(2*n + 1,k)*binomial(2*n + 1,n - 2*k).
More generally, the coefficient of x^n in A(x)^r equals r/(2*n + r)*Sum_{k = 0..floor(n/2)} binomial(2*n + r,k)*binomial(2*n + r,n - 2*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} 1/2*b(n)*x^n/n), where b(n) = Sum_{k = 0..floor(n/2)} binomial(2*n,k)*binomial(2*n,n - 2*k). Cf. A036765, A198951, A200731. (End)
Recurrence: 5*n*(5*n - 1)*(5*n + 1)*(5*n + 2)*(5*n + 3)*(13144*n^4 - 57784*n^3 + 90149*n^2 - 59354*n + 13980)*a(n) = 8*(2*n - 1)*(16259128*n^8 - 71478808*n^7 + 108653137*n^6 - 60530902*n^5 - 2811173*n^4 + 12694433*n^3 - 2398482*n^2 - 352503*n + 78570)*a(n-1) + 128*(n-1)*(2*n - 3)*(2*n - 1)*(52576*n^6 - 178560*n^5 + 136156*n^4 + 22938*n^3 - 16067*n^2 - 3138*n - 405)*a(n-2) + 2048*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(13144*n^4 - 5208*n^3 - 4339*n^2 + 168*n + 135)*a(n-3). - Vaclav Kotesovec, Nov 17 2017
A(x^2) = (1/x) * series reversion of x/(1 + x^2 + x^4 + x^6). - Peter Bala, Jul 27 2023
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 54*x^4 + 262*x^5 + 1337*x^6 +...
where A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)^4).
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 141*x^4 + 704*x^5 + 3666*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 88*x^3 + 451*x^4 + 2392*x^5 + 13022*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 182*x^3 + 1014*x^4 + 5718*x^5 + 32623*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^4 + x^3*A(x)^6.
From Paul D. Hanna, Nov 11 2011: (Start)
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^2)*x*A + (1 + 2^2*x*A^2 + x^2*A^4)*x^2*A^2/2 +
(1 + 3^2*x*A^2 + 3^2*x^2*A^4 + x^3*A^6)*x^3*A^3/3 +
(1 + 4^2*x*A^2 + 6^2*x^2*A^4 + 4^2*x^3*A^6 + x^4*A^8)*x^4*A^4/4 +
(1 + 5^2*x*A^2 + 10^2*x^2*A^4 + 10^2*x^3*A^6 + 5^2*x^4*A^8 + x^5*A^10)*x^5*A^5/5 + ...
which involves squares of binomial coefficients. (End)
MAPLE
F:= proc(n) if n::even then
simplify((1/2)*hypergeom([-(1/2)*n, -2*n-1, -(1/2)*n+1/2], [(1/2)*n+1, 3/2+(1/2)*n], -1)*(2*n+2)!/((2*n+1)*((n+1)!)^2))
else
simplify((1/2)*hypergeom([-(1/2)*n, -2*n-1, -(1/2)*n+1/2], [(1/2)*n+1, 3/2+(1/2)*n], -1)*(2*n+2)!/((2*n+1)*((n+1)!)^2))
fi
end proc:
map(F, [$0..30]); # Robert Israel, Jun 22 2015
MATHEMATICA
a[n_] := 1/(2n + 1) Sum[Binomial[2n + 1, k] Binomial[2n + 1, n - 2k], {k, 0, n/2}];
(* or: *)
a[n_] := (Binomial[2n + 1, n] HypergeometricPFQ[{-2n - 1, 1/2 - n/2, -n/2}, {n/2 + 1, n/2 + 3/2}, -1])/(2n + 1);
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 17 2017 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1+x*A^2)*(1+x^2*A^4)+x*O(x^n)); polcoeff(A, n)} /* Paul D. Hanna */
(PARI) {a(n)=polcoeff(sqrt((1/x)*serreverse(x/(1 + x + x^2 + x^3 +x*O(x^n))^2)), n)} /* Paul D. Hanna */
(PARI) {a(n)=polcoeff( (1 + x + x^2 + x^3+x*O(x^n))^(2*n+1)/(2*n+1), n)} /* Paul D. Hanna */
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (x*A+x*O(x^n))^m/m*sum(j=0, m, binomial(m, j)^2*x^j*A^(2*j))))); polcoeff(A, n, x)} /* Paul D. Hanna */
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*A^m/m*(1-x*A^2)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*A^(2*j))))); polcoeff(A, n, x)} /* Paul D. Hanna */
CROSSREFS
Cf. A200731.
Sequence in context: A370441 A200740 A177133 * A193115 A270489 A335819
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Feb 15 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 03:30 EDT 2024. Contains 371906 sequences. (Running on oeis4.)