%I #24 Jul 27 2022 06:20:41
%S 1,15,210,3003,43758,646646,9657700,145422675,2203961430,33578000610,
%T 513791607420,7890371113950,121548660036300,1877405874732108,
%U 29065024282889672,450883717216034179,7007092303604022630,109069992321755544170,1700179760011004467468,26536589497469056215210,414670662257153823494820
%N Expansion of ( 2F1([-1/4, 1/4]; [-1/2], 16*x) - 1 ) / (2*x).
%C Combinatorial interpretation welcome.
%C Probably a class of paths (Cf. A135404, A000888).
%C Number of North-East lattice paths from (0,0) to (n,n+1). - _Michael D. Weiner_, Apr 14 2017
%H Vincenzo Librandi, <a href="/A186231/b186231.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = A001791(2n+1). - _R. J. Mathar_, Jul 10 2012
%F D-finite with recurrence -(n+1)*(2*n-1)*a(n) +2*(4*n-1)*(4*n+1)*a(n-1)=0. - _R. J. Mathar_, Apr 26 2017
%t CoefficientList[Series[(HypergeometricPFQ[{-(1/4), 1/4}, {-(1/2)}, 16 x] - 1)/(2 x), {x, 0, 20}], x]
%Y Cf. A186229.
%K nonn
%O 0,2
%A _Olivier GĂ©rard_, Feb 15 2011