login
Rank of (1/4)n^3 when {(1/4)i^3: i>=1} and {j^2>: j>=1} are jointly ranked with (1/4)i^3 after j^2 when (1/4)i^3=j^2. Complement of A186151.
2

%I #4 Mar 30 2012 18:57:18

%S 1,3,5,8,10,13,16,19,22,25,29,32,36,40,44,48,52,56,60,64,69,73,78,82,

%T 87,92,97,102,107,112,117,122,127,133,138,144,149,155,160,166,172,178,

%U 183,189,195,201,208,214,220,226,233,239,245,252,258,265,272,278,285,292,299,306,313,320,327,334,341,348,355,362,370,377,384,392,399,407,414,422,430,437,445,453,461,468,476,484,492,500,508,516,525,533,541,549,557,566,574,583,591,600

%N Rank of (1/4)n^3 when {(1/4)i^3: i>=1} and {j^2>: j>=1} are jointly ranked with (1/4)i^3 after j^2 when (1/4)i^3=j^2. Complement of A186151.

%C See A186145.

%t d=-1/8; u=1/4; v=1; p=3; q=2;

%t h[n_]:=((u*n^p-d)/v)^(1/q);

%t a[n_]:=n+Floor[h[n]]; (* rank of u*n^p *)

%t k[n_]:=((v*n^q+d)/u)^(1/p);

%t b[n_]:=n+Floor[k[n]]; (* rank of v*n^q *)

%t Table[a[n],{n,1,100}] (* A186150 *)

%t Table[b[n],{n,1,100}] (* A186151 *)

%Y Cf A186145, A186151.

%K nonn

%O 1,2

%A _Clark Kimberling_, Feb 13 2011