%I #16 May 17 2015 13:23:51
%S 1,4,9,12,21,24,26,30,47,50,52,59,62,67,99,102,104,110,113,116,126,
%T 129,133,139,197,200,202,208,211,214,227,231,234,238,254,256,260,265,
%U 272,375,378,380,386,389,392,404,407,411,414,418,440,443,450,452,456,461,486,489,494,500,508,686,689,691
%N Positions of the odd partitions of (2k+1) in reverse lexicographic order converge to this limiting sequence.
%H Alois P. Heinz, <a href="/A186130/b186130.txt">Table of n, a(n) for n = 1..10000</a>
%e The odd partitions of (2*4+1) occur at positions 1, 4, 9, 12, 19, 21, 25, and 30. For (2*5+1) they occur at 1, 4, 9, 12, 20, ..., so for k=5 only four terms have stabilized, giving a(1) = 1, a(2) = 4, a(3) = 9, and a(4) = 12.
%t <<DiscreteMath`Combinatorica`;
%t it=Table[Flatten[Position[Partitions[n],q_List/; FreeQ[q,_?EvenQ],1]],{n,39,39+2,2}];{{diffat}}=Position[Take[Last[it],Length[First[it] ] ] - First[it] , a_ /;(a!=0),1,1]; Take[First[it],diffat -1 ]
%Y Cf. A186131, A035399.
%Y First differences give A186203.
%K nonn
%O 1,2
%A _Wouter Meeussen_, Feb 13 2011