login
Number of (n+2)X6 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order
1

%I #5 Mar 31 2012 12:36:04

%S 83378583,2743553694,55707179395,837192826927,10064164793382,

%T 101247852066065,878623899164100,6723402580436327,46135247077059665,

%U 287649593317228144,1646973498834082977,8735145703449999245

%N Number of (n+2)X6 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order

%C Column 4 of A186096

%H R. H. Hardin, <a href="/A186091/b186091.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = (1723/349372835543624695228590820876206659870581063680000000)*n^46

%F + (14563/3367742704546176648703917834900273509695488000000000)*n^45

%F + (143944849/78184458082013199060106641500429879127048192000000000)*n^44

%F + (2921513857/5753834577464174822605250673191809286406144000000000)*n^43

%F + (16643238853/156111790861431099838126956249390174437376000000000)*n^42

%F + (7740566339287/401430319357965685298040744641289019981824000000000)*n^41

%F + (1838447442023/575940199939692518361607955009022984192000000000)*n^40

%F + (3387081817718551/7090022461326559622589449653042110529536000000000)*n^39

%F + (656040493497009427/10544135968126678413081745637857497710592000000000)*n^38

%F + (519610495937119/75504016957584521396933373704672378880000000)*n^37

%F + (736009863038333311/1145739446512895749801438300304572416000000000)*n^36

%F + (299320034541555633667/5892374296352035284693111258709229568000000000)*n^35

%F + (1931465683087195460281/563241660680709255154488576200146944000000000)*n^34

%F + (100851758328838466092657/506013898365556977892802571131682816000000000)*n^33

%F + (28827568846012826006373527/2867412090738156208059214569746202624000000000)*n^32

%F + (60530440359198710678531123/136543432892293152764724503321247744000000000)*n^31

%F + (12017325625908710745855632521/698867462975607964688267350332407808000000000)*n^30

%F + (44176936043467380100867432847/74878656747386567645171501821329408000000000)*n^29

%F + (62303765321303588003693098933/3462948019960271282575882842852556800000000)*n^28

%F + (121083988505519881149713468004023/247254488625163369575918034979672555520000000)*n^27

%F + (160155434898486096110481562448899/13411239521088742925715475270100582400000000)*n^26

%F + (21729634872706525495011317098195633/83021958940073170492524370719670272000000000)*n^25

%F + (1354982429153432004976869694755142331/262088929202976087241106346781704192000000000)*n^24

%F + (189854081984732297560342823809172947/2058395676200161251880769521975296000000000)*n^23

%F + (125181881389962348400009988576699736731/84100166199035159719700011897847808000000000)*n^22

%F + (134426470495318531120514569282693099680251/6181362215629084239397950874491813888000000000)*n^21

%F + (296350582772476784370927481428651535807333/1030227035938180706566325145748635648000000000)*n^20

%F + (4443781397597201694742581197534949135469/1291011323230802890433991410712576000000000)*n^19

%F + (47793314466800864920847856965801562131803/1284682836352220523324020864581632000000000)*n^18

%F + (59851567183608541200059611033983918227431/165173507530999781570231254017638400000000)*n^17

%F + (446591561252888532836622114396917906102465909/140810415170177313788622144050036736000000000)*n^16

%F + (36759749570755049384330574033709765711785061073/1478509359286861794780532512525385728000000000)*n^15

%F + (112083510825512971832229723010840649345676315049/644478438663503859263309043921321984000000000)*n^14

%F + (1507972699138371117884662300900036701107848741/1394974975462129565504997930565632000000000)*n^13

%F + (568908704419142179133952811902350175139396429/95733576747401048613088093274112000000000)*n^12

%F + (5484275786933554370395741968018949662043397/190883275241123366927339618304000000000)*n^11

%F + (1790053403253441147599223031600717155382526869511/14755412385125465392534926027128832000000000)*n^10

%F + (206281446286292838142679303875313458321391375327/465260750882334494359209379233792000000000)*n^9

%F + (11697005368831188926449889000533084929851862793/8438552834630576613377817172377600000000)*n^8

%F + (12471153109007561379458264115651213871617216271/3415604718779042914938640284057600000000)*n^7

%F + (714153928681442475492875627042284852676367010153/89858867476545320687177394806415360000000)*n^6

%F + (1193462213423385521093478688492713256680507113/85579873787186019702073709339443200000)*n^5

%F + (20878952677535585080472756459418874284324719/1095218622871725847377729018332160000)*n^4

%F + (15167223213578070416095324343937946500589/790201026602976801859833346560000)*n^3

%F + (9509776358612579445032452864541147/741685749375969881539056000)*n^2

%F + (4349773576572228484737731/941958815880242160)*n

%F + 149976

%e Some solutions for 4X6

%e ..0..0..0..0..0..1....0..0..0..0..0..0....0..0..0..0..1..2....0..0..0..0..0..4

%e ..0..0..0..0..0..1....0..0..0..0..3..4....0..0..0..0..4..4....0..0..0..0..1..2

%e ..0..0..0..1..1..0....0..0..0..1..0..3....0..0..0..1..1..3....0..0..0..0..1..2

%e ..0..0..0..1..3..3....0..0..0..1..2..4....0..0..0..1..4..1....0..0..0..0..3..3

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 12 2011