login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2)X4 binary arrays with each 3X3 subblock singular
1

%I #5 Mar 31 2012 12:36:04

%S 2038,21466,224698,2270854,23369314,240280270,2466606274,25348415950,

%T 260479732738,2676521643406,27504010370530,282631133426158,

%U 2904313272748546,29844803812097998,306686035021471138

%N Number of (n+2)X4 binary arrays with each 3X3 subblock singular

%C Column 2 of A186052

%H R. H. Hardin, <a href="/A186045/b186045.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n)=14*a(n-1)-45*a(n-2)+184*a(n-3)-1468*a(n-4)+3604*a(n-5)-10460*a(n-6)+45192*a(n-7)-66568*a(n-8)+121728*a(n-9)-342032*a(n-10)+234240*a(n-11)-343296*a(n-12)+580608*a(n-13)

%e Some solutions for 6X4

%e ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0

%e ..0..1..0..1....0..1..0..1....0..0..0..0....0..1..0..0....0..1..0..1

%e ..0..1..0..1....1..0..0..1....0..0..0..1....0..0..0..0....0..1..0..1

%e ..0..1..0..0....0..0..0..1....0..0..0..1....0..1..1..0....0..0..1..1

%e ..1..1..0..1....1..1..1..0....0..0..1..0....0..1..0..1....0..0..0..0

%e ..0..0..0..1....1..0..0..0....1..0..1..1....0..1..0..1....0..1..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 11 2011