This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185956 Fajtlowicz q-primes. 3
 2, 3, 5, 7, 13, 11, 19, 17, 29, 23, 37, 43, 31, 47, 41, 61, 53, 67, 71, 59, 73, 89, 79, 83, 103, 101, 107, 109, 97, 127, 131, 113, 139, 137, 151, 157, 149, 163, 173, 181, 191, 167, 193, 211, 179, 199, 223, 197, 227, 233, 239, 229, 241, 257, 251, 277, 293, 283, 313, 281, 271, 307, 269, 337, 263, 311, 347, 317, 359, 353, 367, 331, 373, 379, 349, 389, 383, 401, 397, 421, 409, 443, 431, 419, 449, 433, 439, 467, 457, 463, 491, 487, 479 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS S. Fajtlowicz defined two related sequences of primes as follows: 1. q(1)=2 and p(1)=7. 2. q(n+1) is the smallest prime dividing p(n)+2. 3. p(n+1) is the smallest prime p larger than p(n) such that p+2 is not prime and not divisible by any of q(1),q(2),...,q(n+1). P. ErdÅ‘s and C. Larson conjecture that all primes occur in the sequence of q's. The values of p and q were computed by Bethany Turner. REFERENCES S. Fajtlowicz, Written on the Wall: Conjectures of Graffiti, #784 (1994). LINKS R. J. Mathar, Table of n, a(n) for n = 1..218 S. Fajtlowicz, Graffity & automated conjecture making (2009), click on "conjectures up to No. 894", see page  136. MAPLE A185956 := proc(n)     option remember;     if n = 1 then         2;     else         A020639(2+A185955(n-1)) ;     end if; end proc: seq(A185956(n), n=1..20) ; # R. J. Mathar, Jul 28 2019 CROSSREFS Cf. A185955. Sequence in context: A067836 A108546 A065107 * A316885 A225039 A264731 Adjacent sequences:  A185953 A185954 A185955 * A185957 A185958 A185959 KEYWORD nonn AUTHOR Craig Eric Larson, Feb 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 13:32 EDT 2019. Contains 328093 sequences. (Running on oeis4.)