login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185956 Fajtlowicz q-primes. 3
2, 3, 5, 7, 13, 11, 19, 17, 29, 23, 37, 43, 31, 47, 41, 61, 53, 67, 71, 59, 73, 89, 79, 83, 103, 101, 107, 109, 97, 127, 131, 113, 139, 137, 151, 157, 149, 163, 173, 181, 191, 167, 193, 211, 179, 199, 223, 197, 227, 233, 239, 229, 241, 257, 251, 277, 293, 283, 313, 281, 271, 307, 269, 337, 263, 311, 347, 317, 359, 353, 367, 331, 373, 379, 349, 389, 383, 401, 397, 421, 409, 443, 431, 419, 449, 433, 439, 467, 457, 463, 491, 487, 479 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

S. Fajtlowicz defined two related sequences of primes as follows:

1. q(1)=2 and p(1)=7.

2. q(n+1) is the smallest prime dividing p(n)+2.

3. p(n+1) is the smallest prime p larger than p(n) such that p+2 is not prime and not divisible by any of q(1),q(2),...,q(n+1).

P. Erdős and C. Larson conjecture that all primes occur in the sequence of q's.

The values of p and q were computed by Bethany Turner.

REFERENCES

S. Fajtlowicz, Written on the Wall: Conjectures of Graffiti, #784 (1994).

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..218

S. Fajtlowicz, Graffity & automated conjecture making (2009), click on "conjectures up to No. 894", see page  136.

MAPLE

A185956 := proc(n)

    option remember;

    if n = 1 then

        2;

    else

        A020639(2+A185955(n-1)) ;

    end if;

end proc:

seq(A185956(n), n=1..20) ; # R. J. Mathar, Jul 28 2019

CROSSREFS

Cf. A185955.

Sequence in context: A067836 A108546 A065107 * A316885 A225039 A264731

Adjacent sequences:  A185953 A185954 A185955 * A185957 A185958 A185959

KEYWORD

nonn

AUTHOR

Craig Eric Larson, Feb 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 13:32 EDT 2019. Contains 328093 sequences. (Running on oeis4.)