This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185937 Riordan array (A000045(x)^m, x*A000108(x)), m = 1. 3
 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 3, 1, 0, 5, 12, 9, 4, 1, 0, 8, 31, 26, 14, 5, 1, 0, 13, 85, 77, 46, 20, 6, 1, 0, 21, 248, 235, 150, 73, 27, 7, 1, 0, 34, 762, 741, 493, 258, 108, 35, 8, 1, 0, 55, 2440, 2406, 1644, 903, 410, 152, 44, 9, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Essentially A139375 with zero diagonal added. - Ralf Stephan, Jan 01 2014 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013. FORMULA For m=1: R(n,k,m) = k*Sum_{i=0..n-k} (Sum_{j=ceiling((i-m)/2)..i-m} binomial(j, i-m-j) * binomial(m+j-1, m-1)) * binomial(2*(n-i)-k-1, n-i-1)/(n-i) if k > 0; R(n,0,m) = Sum_{j=ceiling((n-m)/2)..n-m} binomial(j, n-m-j) * binomial(m+j-1, m-1). EXAMPLE Array begins    0;    1,  0;    1,  1,  0;    2,  2,  1,  0;    3,  5,  3,  1,  0;    5, 12,  9,  4,  1,  0;    8, 31, 26, 14,  5,  1,  0;   13, 85, 77, 46, 20,  6,  1,  0; MATHEMATICA r[n_, k_, m_] := k*Sum[ Sum[ Binomial[j, i-m-j]*Binomial[m+j-1, m-1], {j, Ceiling[(i-m)/2], i-m}] * Binomial[2*(n-i)-k-1, n-i-1]/(n-i), {i, 0, n-k}]; r[n_, 0, m_] := Sum[ Binomial[j, n-m-j]*Binomial[m+j-1, m-1], {j, Ceiling[(n-m)/2], n-m}]; Table[r[n, k, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 14 2013, after Vladimir Kruchinin *) CROSSREFS Cf. A000045, A000108, A139375. Sequence in context: A276543 A107424 A155161 * A292086 A065177 A064044 Adjacent sequences:  A185934 A185935 A185936 * A185938 A185939 A185940 KEYWORD nonn,tabl AUTHOR Vladimir Kruchinin, Feb 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 13:26 EST 2019. Contains 329751 sequences. (Running on oeis4.)