login
A185918
a(n) = 12*n^2 - 2*n - 1.
2
-1, 9, 43, 101, 183, 289, 419, 573, 751, 953, 1179, 1429, 1703, 2001, 2323, 2669, 3039, 3433, 3851, 4293, 4759, 5249, 5763, 6301, 6863, 7449, 8059, 8693, 9351, 10033, 10739, 11469, 12223, 13001, 13803, 14629, 15479, 16353, 17251, 18173, 19119, 20089, 21083, 22101, 23143, 24209
OFFSET
0,2
COMMENTS
The second quadrisection of A184005(n-1) is A179741(n).
The first quadrisection of A184005(n-1) is a(n).
Sequence found by reading the line from -1, in the direction -1, 9, ..., in the square spiral whose vertices are -1 together with the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012
FORMULA
a(n) = A184005(4*n-1). [corrected by R. J. Mathar, Aug 24 2011]
a(n) = a(n-1) + 24*n - 14.
a(n) = 2*a(n-1) - a(n) + 24.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(1+x)*(13*x-1) / (x-1)^3. - R. J. Mathar, Aug 24 2011
a(n) = A154106(n-1) - 2, n >= 1. - Omar E. Pol, Jul 19 2012
E.g.f.: (12*x^2 + 10*x -1)*exp(x). - G. C. Greubel, Jul 22 2017
MAPLE
A185918:=n->12*n^2-2*n-1: seq(A185918(n), n=0..60); # Wesley Ivan Hurt, Jan 31 2017
MATHEMATICA
Table[12n^2-2n-1, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {-1, 9, 43}, 50] (* Harvey P. Dale, May 20 2012 *)
PROG
(Magma) [-1-2*n+12*n^2: n in [0..80] ]; // Vincenzo Librandi, Feb 09 2011
(PARI) a(n)=12*n^2-2*n-1 \\ Charles R Greathouse IV, Dec 21 2011
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Feb 08 2011
EXTENSIONS
More terms from Vincenzo Librandi, Feb 09 2011
STATUS
approved