login
A185740
Weight array of A185738, by antidiagonals.
3
1, 1, 2, 1, 0, 4, 1, 0, 0, 8, 1, 0, 0, 0, 16, 1, 0, 0, 0, 0, 32, 1, 0, 0, 0, 0, 0, 64, 1, 0, 0, 0, 0, 0, 0, 128, 1, 0, 0, 0, 0, 0, 0, 0, 256, 1, 0, 0, 0, 0, 0, 0, 0, 0, 512, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2048, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4096, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8192
OFFSET
1,3
COMMENTS
This array is a member of a chain. See A185738. A185740 exemplifies the sort of very simple array whose successive accumulation arrays are interesting. The first two accumulation arrays of A185740 are A185738 and A185739.
FORMULA
Column 1: 2^n. Row 1: 1,1,1,1,1,1,1,1,1,1,1,... All other terms: 0.
EXAMPLE
Northwest corner:
1...1...1...1...1...1...1
2...0...0...0...0...0...0
4...0...0...0...0...0...0
8...0...0...0...0...0...0
MATHEMATICA
(See A185738.)
f[n_, k_] := 0; f[n_, 1] := 2^(n - 1); f[1, k_] := 1;
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 10}]] (*Array A185740*)
Table[f[n - k + 1, k], {n, 50}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 12 2017 *)
CROSSREFS
Cf. A185738.
Sequence in context: A121448 A019094 A134082 * A139360 A326759 A140882
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 02 2011
STATUS
approved