%I #7 Apr 21 2013 07:39:59
%S 1,1,3,1,2,2,2,3,1,3,3,5,2,2,3,5,8,3,3,2,2,8,13,5,5,3,1,3,13,21,8,8,5,
%T 2,2,2,21,34,13,13,8,3,3,1,3,34,55,21,21,13,5,5,2,2,3,55,89,34,34,21,
%U 8,8,3,3,2,2,89,144,55,55,34,13,13,5,5,3,1,3,144,233,89,89,55,21,21,8,8,5,2,2,3,233,377,144,144,89,34,34,13,13,8,3,3,2,2,377,610,233,233,144,55,55,21,21,13,5,5,3,1
%N Weight array of the Wythoff array, by antidiagonals.
%C The Wythoff array, A035513, is the accumulation array of A185736. These arrays chain:
%C ... ->A185736->A035513->A185737-> ... (For definitions of weight array and accumulation array, see A144112.)Every term of A185736 is a Fibonacci number.
%F Row 1: 1 0 0 1 1 2 (continue with Fibonacci recurrence)
%F Row 2: 3 2 3 5 8 13 (continue with Fib. recurrence)
%F Row 3: 2 1 2 3 5 8 (continue with Fib. recurrence)
%F For m>3, if the row number is m of form floor(h*r+1), where r=(1+sqrt(5))/2, then (row m)=(row 2); otherwise, (row m)=(row 3).
%e Northwest corner:
%e 1 1 1 2 3 4 8
%e 3 2 3 5 8 13 21
%e 2 1 2 3 5 8 13
%e 3 2 3 5 8 13 21
%e 3 2 3 5 8 13 21
%e 2 1 2 3 5 8 13
%Y Cf. A035513, A185737.
%K nonn,tabl
%O 1,3
%A _Clark Kimberling_, Feb 02 2011