%I #7 Mar 30 2012 18:57:17
%S 1,3,4,8,10,10,18,22,24,21,35,44,45,48,39,61,80,81,84,86,66,98,134,
%T 138,136,144,142,104,148,210,222,216,220,231,220,155,213,312,339,332,
%U 325,340,351,324,221,295,444,495,492,475,480,504,510,458,304,396,610,696,704,680,666,690,720,714,626,406,518,814,948,976,950,918,924,965,996,969,832,529,663,1060,1257,1316,1295,1248,1225,1260,1315,1340,1281,1080,675,833,1352,1629,1732,1725
%N Array associated with squares, by antidiagonals.
%C Every positive integer occurs exactly once; hence, as a sequence, A185725 is a permutation of the positive integers. The square with corners T(0,0)=1 and T(n,n)=n^2 is occupied by the numbers 1,2,...,n^2.
%C T(n,1)=n^2 (A000290)
%C T(n,n)=(n-1)^2+1 (A002522)
%C T(1,k)=k^2-1 (A132411).
%F T(n,k)=n^2-2k+2 if n>=k; T(n,k)=k^2-2n+1 if n<k.
%e Northwest corner:
%e 1...3...8...15...24
%e 4...2...6...13...22
%e 9...7...5...11...20
%e 16..14..12..10...18
%t f[n_,k_]:=n^2-2*k+2/; n>=k;
%t f[n_,k_]:=k^2-2*n+1/; n<k;
%t TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]
%t Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
%Y Cf. A185725, A060734, A185728.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Feb 01 2011