login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185663 Riordan array (A000045(x)^m, x*A000108(x)), m = 2. 1
0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 5, 3, 1, 0, 0, 10, 9, 4, 1, 0, 0, 20, 24, 14, 5, 1, 0, 0, 38, 64, 44, 20, 6, 1, 0, 0, 71, 173, 135, 71, 27, 7, 1, 0, 0, 130, 485, 414, 241, 106, 35, 8, 1, 0, 0, 235, 1420, 1290, 805, 391, 150, 44, 9, 1, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2013.

FORMULA

R(n,k,m) = k*Sum_{i=0..n-k} (Sum_{j=ceiling((i-m)/2)..i-m} binomial(j, i-m-j) * binomial(m+j-1, m-1)) * binomial(2*(n-i)-k-1, n-i-1)/(n-i), k > 0.

R(n,0,m) = Sum_{j=ceiling((n-m)/2)..n-m} binomial(j,n-m-j) * binomial(m+j-1,m-1), m = 2.

EXAMPLE

Array begins

   0;

   0,  0;

   1,  0,  0;

   2,  1,  0,  0;

   5,  3,  1,  0,  0;

  10,  9,  4,  1,  0,  0;

  20, 24, 14,  5,  1,  0,  0;

  38, 64, 44, 20,  6,  1,  0,  0;

MATHEMATICA

R[n_, k_, m_] := k*Sum[Sum[Binomial[j, i - m - j]*Binomial[m - 1 + j, m - 1], {j, Ceiling[(i - m)/2], i - m}]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k} ]; R[n_, 0, m_] := Sum[Binomial[j, n - m - j]*Binomial[j + m - 1, m - 1], {j, Ceiling[(n - m)/2], n - m}];

Table[R[n, k, 2], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Jul 23 2017 *)

CROSSREFS

Cf. A185937, A139375 (m = 1).

Sequence in context: A246187 A079508 A057150 * A262125 A105868 A267163

Adjacent sequences:  A185660 A185661 A185662 * A185664 A185665 A185666

KEYWORD

nonn,tabl

AUTHOR

Vladimir Kruchinin, Feb 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 08:08 EDT 2019. Contains 328146 sequences. (Running on oeis4.)