login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185655 a(n) = Sum_{k=0..n} binomial(n+k, k)*binomial(n+k+1, k+1)/(n+1). 1
1, 4, 27, 236, 2375, 26090, 304241, 3704860, 46622655, 602035556, 7937288062, 106451074614, 1448267147717, 19944962832826, 277565209168861, 3898075200816892, 55182857681572655, 786731161113510584 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The function B(x,r) = x*Sum_{n>=0} b(n,r)*x^n, where

b(n,r) = Sum_{k=0..n} binomial(n+k, k)*binomial(n+k+1, r*k+1)/(n+1), satisfies

B(x/(1+x) - x^r, r) = x for all positive integer r except at r=1;

B(x,1)/x is the generating function of this sequence.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..830

FORMULA

Recurrence: 2*(n+1)^2*(2*n + 1)*(3*n - 2)*(7*n - 2)*a(n) = (1365*n^5 - 607*n^4 - 821*n^3 + 411*n^2 + 80*n - 44)*a(n-1) - 4*(n-2)*(2*n - 1)^2*(3*n + 1)*(7*n + 5)*a(n-2). - Vaclav Kotesovec, Nov 27 2017

a(n) ~ 2^(4*n+3) / (3*Pi*n^2). - Vaclav Kotesovec, Nov 27 2017

EXAMPLE

G.f.: A(x) = 1 + 4*x + 27*x^2 + 236*x^3 + 2375*x^4 + 26090*x^5 +...

Let G(x*A(x)) = x, then the series reversion of x*A(x) begins:

G(x) = x - 4*x^2 + 5*x^3 - 16*x^4 - 12*x^5 - 218*x^6 - 1197*x^7 - 8974*x^8 - 65582*x^9 - 503614*x^10 - 3956461*x^11 - ...

Does G(x) satisfy a nice functional equation?

MATHEMATICA

Table[Sum[Binomial[n + k, k]*Binomial[n + k + 1, k + 1]/(n + 1), {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Jul 09 2017 *)

PROG

(PARI) {a(n)=sum(k=0, n, binomial(n+k, k)*binomial(n+k+1, k+1))/(n+1)}

CROSSREFS

Sequence in context: A317103 A276029 A160883 * A181146 A303559 A161120

Adjacent sequences:  A185652 A185653 A185654 * A185656 A185657 A185658

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 02:01 EDT 2019. Contains 328244 sequences. (Running on oeis4.)