login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185653 Expansion of exp( Sum_{n>=1} -3*sigma(2n)*x^n/n ) in powers of x. 2
1, -9, 30, -39, 0, 18, 49, 0, -192, 110, 81, 78, -130, 0, -30, -121, 0, 210, 320, -270, 0, -407, 0, 192, 190, 0, 0, 0, 351, -210, -418, 0, -510, 448, 0, 462, 611, 0, -960, 50, 0, 0, -350, 0, 450, -361, -162, 960, 0, 0, 798, -782, 0, -1170, -290, -441, 702, 850, 0, 0, 576 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

When is a(n) zero (A258867)?

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1024

FORMULA

Expansion of q^(-1/8)*eta(q)^9/eta(q^2)^3 in powers of q; equals the self-convolution cube of A115110 [See formula of Michael Somos for A115110].

EXAMPLE

G.f. = 1 - 9*x + 30*x^2 - 39*x^3 + 18*x^5 + 49*x^6 - 192*x^8 + 110*x^9 + ...

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n, -3*sigma(2*m)*x^m/m)+x*O(x^n)), n)}

(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(eta(X)^9/eta(X^2)^3, n)}

CROSSREFS

Cf. A115110, A000203, A258867.

Sequence in context: A279618 A158503 A179506 * A326150 A167154 A063150

Adjacent sequences:  A185650 A185651 A185652 * A185654 A185655 A185656

KEYWORD

sign

AUTHOR

Paul D. Hanna, Feb 16 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 23:31 EDT 2019. Contains 327207 sequences. (Running on oeis4.)