login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185651 A(n,k) = Sum_{d|n} phi(d)*k^(n/d); square array A(n,k), n>=0, k>=0, read by antidiagonals. 23

%I

%S 0,0,0,0,1,0,0,2,2,0,0,3,6,3,0,0,4,12,12,4,0,0,5,20,33,24,5,0,0,6,30,

%T 72,96,40,6,0,0,7,42,135,280,255,84,7,0,0,8,56,228,660,1040,780,140,8,

%U 0,0,9,72,357,1344,3145,4200,2205,288,9,0

%N A(n,k) = Sum_{d|n} phi(d)*k^(n/d); square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A185651/b185651.txt">Antidiagonals n = 0..140, flattened</a>

%F A(n,k) = Sum_{d|n} phi(d)*k^(n/d).

%F A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258170(n,i). - _Alois P. Heinz_, May 22 2015

%F G.f. for column k: Sum_{n>=1} phi(n)*k*x^n/(1-k*x^n) for k >= 0. - _Petros Hadjicostas_, Nov 06 2017

%e Square array A(n,k) begins:

%e 0, 0, 0, 0, 0, 0, 0, ...

%e 0, 1, 2, 3, 4, 5, 6, ...

%e 0, 2, 6, 12, 20, 30, 42, ...

%e 0, 3, 12, 33, 72, 135, 228, ...

%e 0, 4, 24, 96, 280, 660, 1344, ...

%e 0, 5, 40, 255, 1040, 3145, 7800, ...

%e 0, 6, 84, 780, 4200, 15810, 46956, ...

%p with(numtheory):

%p A:= (n, k)-> add(phi(d)*k^(n/d), d=divisors(n)):

%p seq(seq(A(n, d-n), n=0..d), d=0..12);

%t a[_, 0] = a[0, _] = 0; a[n_, k_] := Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* _Jean-Fran├žois Alcover_, Dec 06 2013 *)

%Y Columns k=0..10 give A000004, A001477, A053635, A054610, A054611, A054612, A054613, A054614, A054615, A054616, A054617.

%Y Rows n=0..10 give A000004, A001477, A002378, A054602, A054603, A054604, A054605, A054606, A054607, A054608, A054609.

%Y Main diagonal gives A228640.

%Y Cf. A000010, A258170.

%K nonn,tabl

%O 0,8

%A _Alois P. Heinz_, Aug 29 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 01:58 EDT 2019. Contains 327207 sequences. (Running on oeis4.)