%I #61 May 15 2020 02:50:25
%S 3,3,4,5,5,5,6,5,7,8,8,9,10,10,10,10,8,11,12,12,13,14,14,13,15,13,16,
%T 17,17,18,19,19,19,20,19,21,22,22,23,24,24,24,24,23,24,25,25,26,27,27,
%U 26,28,26,29,30,30,31,32
%N Let f(n) = Sum_{j>=1} j^n/binomial(2*j,j) = r_n*Pi*sqrt(3)/3^{t_n} + s_n/3; sequence gives t_n.
%H Petros Hadjicostas, <a href="/A185585/b185585.txt">Table of n, a(n) for n = 0..300</a>
%H F. J. Dyson, N. E. Frankel and M. L. Glasser, <a href="http://arxiv.org/abs/1009.4274">Lehmer's Interesting Series</a>, arXiv:1009.4274 [math-ph], 2010-2011.
%H F. J. Dyson, N. E. Frankel and M. L. Glasser, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.120.02.116">Lehmer's interesting series</a>, Amer. Math. Monthly, 120 (2013), 116-130.
%H D. H. Lehmer, <a href="https://www.jstor.org/stable/2322496">Interesting series involving the central binomial coefficient</a>, Amer. Math. Monthly, 92(7) (1985), 449-457.
%F a(n) = ilog[3](denominator(2*Sum_{m=1..n+1} Sum_{p=0..m-1} (-1)^p * (m!/((p+1)*3^(m+2))) * Stirling2(n+1,m) * binomial(2*p,p) * binomial(m-1,p))), where ilog[3](3^k) = k. [It follows from Theorem 1 in Dyson et al. (2013).] - _Petros Hadjicostas_, May 14 2020
%p # The function LehmerSer is defined in A181334.
%p a := n -> ilog[3](denom(LehmerSer(n))):
%p seq(a(n), n=0..57); # _Peter Luschny_, May 15 2020
%t f[n_] := Sum[j^n/Binomial[2*j, j], {j, 1, Infinity}];
%t a[n_] := 1 + Log[3, Denominator[Expand[FunctionExpand[f[n]]][[2, 1]]]];
%t Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 60}] (* _Jean-François Alcover_, Nov 24 2017 *)
%o (PARI) a(n) = logint(denominator(2*sum(m=1, n+1, sum(p=0, m-1, (-1)^p*(m!/((p+1)*3^(m+2)))*stirling(n+1,m,2)*binomial(2*p,p)*binomial(m-1,p)))), 3) \\ _Petros Hadjicostas_, May 14 2020
%Y Cf. A098830 (s_n), A181334 (r_n), A181374, A180875, A014307.
%K nonn
%O 0,1
%A _N. J. A. Sloane_, Feb 09 2011, following a suggestion from _Herb Conn_
%E a(11)-a(57) from _Nathaniel Johnston_, Apr 07 2011