This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185578 Decimal expansion of Sum'_{m,n,p = -infinity .. infinity} (-1)^(m + n)/sqrt(m^2 + n^2 + p^2), negated. 7
 1, 4, 8, 0, 3, 8, 9, 8, 0, 6, 5, 1, 2, 2, 2, 2, 5, 9, 7, 9, 0, 7, 7, 6, 1, 7, 0, 6, 3, 5, 2, 8, 1, 7, 5, 5, 5, 7, 0, 7, 6, 6, 0, 5, 0, 8, 5, 1, 3, 6, 8, 8, 5, 5, 3, 6, 4, 5, 5, 3, 6, 2, 5, 7, 0, 0, 8, 7, 5, 7, 3, 1, 7, 4, 3, 5, 0, 4, 6, 1, 2, 7, 3, 9, 8, 8, 9, 1, 0, 7, 8, 8, 9, 0, 2, 0, 4, 5, 9, 0, 1, 8, 6, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The prime at the sum symbol means the term at m=n=p=0 is omitted. LINKS Y. Sakamoto, Madelung constants of simple crystals expressed in terms of Born's basic potentials of 15 figures, J. Chem. Phys. 28 (1958) 164, variable Pi_3. I. J. Zucker, Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures, J. Phys. A: Math. Gen. 8 (11) (1975) 1734, variable c(1). I. J. Zucker, Functional equations for poly-dimensional zeta functions and the evaluation of Madelung constants, J. Phys. A: Math. Gen. 9 (4) (1976) 499, variable c(1). FORMULA Equals Pi/2 - 9*log(2)/2 + 4*Sum_{p>=1, n>=1} (1+(-1)^n+(-1)^(n+p))*cosech(d*Pi)/d where d = sqrt(n^2 + p^2). EXAMPLE 1.48038980651222259790776170... MATHEMATICA digits = 105; Clear[f]; f[n_, p_] := f[n, p] = (s = Sqrt[n^2 + p^2]; ((1 + (-1)^n + (-1)^(n + p))*Csch[s*Pi])/s // N[#, digits+10]&); f[m_] := f[m] = Pi/2 - 9*Log[2]/2 + 4*Sum[f[n, p], {n, 1, m}, {p, 1, m}] // RealDigits[#, 10, digits + 10]& // First; f[0]; f[m=10]; While[ f[m] != f[m-10], Print[m]; m = m+10]; f[m][[1 ;; digits]] (* Jean-François Alcover, Feb 20 2013 *) CROSSREFS Cf. A185576, A185577, A185579, A185580, A185581, A185582, A185583. Sequence in context: A245295 A135691 A011317 * A087264 A253191 A199777 Adjacent sequences:  A185575 A185576 A185577 * A185579 A185580 A185581 KEYWORD cons,nonn AUTHOR R. J. Mathar, Jan 31 2011 EXTENSIONS More terms from Jean-François Alcover, Feb 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 20:23 EDT 2019. Contains 323528 sequences. (Running on oeis4.)