Maple-assisted derivation of formula for A185554

Robert Israel

19 December 2019
We begin by enumerating the possible configurations for a 2×4 sub-array, where each element is equal to at most two of its horizontal and vertical neighbours.
An array $\left[\begin{array}{llll}b_{1} & b_{2} & b_{3} & b_{4} \\ b_{5} & b_{6} & b_{7} & b_{8}\end{array}\right]$ is encoded as the list $\left[b_{1}, b_{2}, \ldots, b_{8}\right]$.

```
> Configs:= NULL:
    for x from 3^8 to 2*3^8-1 do
        L:= convert(x,base,3) [1..8];
        if nops({L[1],L[2],L[3],L[6]}) > 1 and nops({L[2],L[3],L[4],L
    [7]}) > 1
        and nops({L[2],L[5],L[6],L[7]}) > 1 and nops({L[3],L[6],L[7],
    L[8]}) > 1
            then Configs:= Configs, L
        fi
    od:
    Configs:= [Configs]: nops(Configs);
                                    5718
[There are 5718 possible configurations.
```

Consider the 5718×5718 transition matrix T such that $T_{i j}=1$ if the bottom two rows of a 3×4 subarray could be in configuration i while the top two rows are in configuration j (i.e. the middle row is compatible with both i and j, and each element in that row is equal to 1 or 2 of its horizontal and vertical neighbours), and 0 otherwise. The following Maple code computes it.

```
>> q:= proc(i,j) local Ci, Cj;
    Ci:= Configs[i]; Cj:= Configs[j];
    if Ci[1..4] <> Cj[5..8] then return false fi;
    {numboccur(Ci[1],[Cj[1],Ci[2],Ci[5]]), numboccur(Ci[2],[Cj[2],
    Ci[1],Ci[3],Ci[6]]),
        numboccur(Ci[3],[Cj[3],Ci[2],Ci[4],Ci[7]]), numboccur(Ci
    [4],[Cj[4],Ci[3],Ci[8]])} subset {1,2}
    end proc:
    T:= Matrix(5718,5718, storage=sparse):
    for i from 1 to 5718 do for j from 1 to 5718 do
        if q(i,j) then T[i,j]:= 1 fi od od:
```

Since the constraints are symmetric under permutations of $0,1,2, a(n)=u T^{n-2} v$ for $n \geq 2$ where u and v are row and column vectors respectively with $u_{i}=1$ for i corresponding to configurations that could be the bottom two rows of an array and have lower left entry 0,0 otherwise (so each member of the bottom row is equal to 1 or 2 of its neighbours), and $v_{i}=1$ for i corresponding to configurations that could be the top two rows, 0 otherwise. The following Maple code produces these vectors.

```
> uf:= proc(i) local Ci;
    Ci:= Configs[i];
    if Ci[5] = 0 and ((Ci[5]=Ci[1] or Ci[5]=Ci[6]) and member
    (numboccur(Ci[6],[Ci[5],Ci[2],Ci[7]]),{1,2}) and member(numboccur
    (Ci[7],[Ci[6],Ci[3],Ci[8]]),{1,2}) and (Ci[8]=Ci[7] or Ci[8]=Ci
    [4])) then 1 else 0 fi
    end proc:
    u:= Vector[row] (5718,uf) :
    vf:= proc(i) local Ci;
    Ci:= Configs[i];
    if (Ci[1]=Ci[5] or Ci[1]=Ci[2]) and member(numboccur(Ci[2],[Ci
    [1],Ci[6],Ci[3]]),{1,2}) and member(numboccur(Ci[3],[Ci[2],Ci[7],
    Ci[4]]),{1,2}) and (Ci[4]=Ci[3] or Ci[4]=Ci[8]) then 1 else O fi
    end proc:
    v:= Vector[column] (5718,vf):
```

To check, here are the first few entries of our sequence. For future use, we precompute values of $T^{n} v$.
[$>$ Tnv[0]:= v:
for n from 1 to 120 do Tnv[n]:= T. Tnv[n-1] od:
seq(u . Tnv[n], n=0..20);
$120,2530,58458,1317540,30132444,684657326,15594228288,354894362166$,
8078976180614, 183894888689408, 4185999926427220, 95284617951103300,
2168945067666040200, 49371181800142293644, 1123825227937533564738,
25581377597284008562428, 582303119481233722471478,
13254833954779407415752780, 301716785086455011043777576,
6867910857293036216335063986, 156332699887152127792146508580
[We form the matrix with columns $T^{n} v, n=0 \ldots 120$ and check its rank.
[> M:= Matrix([seq(Tnv[i],i=0..120)]):
> LinearAlgebra:-Rank (M) ;

$$
\begin{equation*}
101 \tag{3}
\end{equation*}
$$

The rank turns out to be 101. This suggests that $T^{n} v$ for $n=0 . .101$ are linearly dependent. We find a nonzero vector w such that $\sum_{n=0}^{101} w_{n} T^{n} v=0$.
$\mathrm{w}:=\mathrm{op}(1$, LinearAlgebra:-NullSpace (M[.., 1..102])) :
We thus have the linear recurrence $\sum_{i=0}^{101} w_{i} a(n+i)=u \sum_{i=0}^{101} w_{i} T^{n+i-2} v=0$ for $n \geq 2$. It turns out to
be also true for $n=1$.

$$
\begin{align*}
&>\mathrm{n}:= \\
&. \mathrm{I} 01)]) \mathrm{n})=0 ; \\
& r e c:=295147905179352825856 a(n)-332041393326771929088 a(n+1) \tag{4}\\
&-1941519813757930307584 a(n+2)-2044706288420243111936 a(n+3) \\
&-121633218736022355968 a(n+4)+8182319946991811952640 a(n+5) \\
&+25463154134769180082176 a(n+6)+40449176880620098289664 a(n+7) \\
&+40091104118497171472384 a(n+8)+27903408341499141685248 a(n+9) \\
&-6941962779653799149568 a(n+10)-52598494670443536973824 a(n+11) \\
&-53854491431912523956224 a(n+12)-298869609984722771968 a(n+13) \\
&+50190706150366219599872 a(n+14)+68475539393300238696448 a(n+15)
\end{align*}
$$

$+96975688329403199127552 a(n+16)+30358739918324848656384 a(n+17)$
$-219289557462585448595456 a(n+18)-539658092890191275491328 a(n+19)$
$-945559422066230825058304 a(n+20)-1160028358481114694680576 a(n+21)$
$-1072824527622515571294208 a(n+22)-800329969750042640121856 a(n+23)$
$-377273764575097871400960 a(n+24)-163297124155521218117632 a(n+25)$
$-100688595377654065004544 a(n+26)+94010047918357312700416 a(n+27)$
$+343028134507002896318464 a(n+28)+541348852179025757470720 a(n+29)$
$+544085088930072536023040 a(n+30)+391032148869421964197888 a(n+31)$
$+265607555262489727336448 a(n+32)+150730144993103890481152 a(n+33)$
$+29524038365973718761472 a(n+34)-113694496014852526833664 a(n+35)$
$-213219411059324488056832 a(n+36)-188666192102351631908864 a(n+37)$
$-99968886835810599010304 a(n+38)-18267268529700595222528 a(n+39)$
$+12088053402193683802112 a(n+40)+15420944732879833245696 a(n+41)$
$+23083394330568721047040 a(n+42)+18750740551622784971904 a(n+43)$
$+10319642284093632181376 a(n+44)-323301399986584682112 a(n+45)$
$-1102987086876264049680 a(n+46)+2338491175310325493008 a(n+47)$
$+1540176472945697425556 a(n+48)-83700829004982336016 a(n+49)$
$-1700613155807804652072 a(n+50)-778929537810853918300 a(n+51)$
$-115111071983392212235 a(n+52)+42218324964758983002 a(n+53)$
$-10016469039796030058 a(n+54)-95350067329085104341 a(n+55)$
$+23908385779591152069 a(n+56)+4029734507254683854 a(n+57)$
$+28551917408841809903 a(n+58)+1344704768449539770 a(n+59)$
$+2173269329490565150 a(n+60)-361416829163184945 a(n+61)$
$-170811285891745950 a(n+62)+1309995955119981109 a(n+63)$
$-266367690925611625 a(n+64)+160779258939467112 a(n+65)$
$-397713205516343731 a(n+66)+141101005337997876 a(n+67)$
$-97827116391337025 a(n+68)+68827142868696976 a(n+69)$
$-37995917837230503 a(n+70)+16708334020463824 a(n+71)$
$-8849643836131979 a(n+72)+3246879448312390 a(n+73)$
$-1391389040465161 a(n+74)+1139770021269883 a(n+75)$
$-690758571385125 a(n+76)+385093583785430 a(n+77)-205561890798248 a(n$
$+78)+77740031051801 a(n+79)-20243817514119 a(n+80)$
$+4458240266632 a(n+81)-496296898921 a(n+82)+375565507264 a(n+83)$
$-254308155324 a(n+84)+27484219476 a(n+85)+12000869775 a(n+86)$
$-5211771316 a(n+87)+576808421 a(n+88)+485584116 a(n+89)$
$-72333261 a(n+90)-56821843 a(n+91)+5854830 a(n+92)+4793870 a(n$
$+93)-308510 a(n+94)-244487 a(n+95)-1397 a(n+96)+7766 a(n+97)$
$+885 a(n+98)-184 a(n+99)-17 a(n+100)+a(n+101)=0$

