%I #5 Mar 31 2012 12:36:01
%S 16,34,34,92,92,92,218,240,240,218,540,672,866,672,540,1320,1646,2766,
%T 2766,1646,1320,3238,4452,8762,13977,8762,4452,3238,7934,11050,27102,
%U 49670,49670,27102,11050,7934,19450,29506,83688,231636,265724,231636
%N T(n,k)=Number of (n+1)X(k+1) binary arrays with no 2X2 subblock determinant equal to any horizontal or vertical neighbor 2X2 subblock determinant
%C Table starts
%C ....16.....34......92......218........540........1320.........3238
%C ....34.....92.....240......672.......1646........4452........11050
%C ....92....240.....866.....2766.......8762.......27102........83688
%C ...218....672....2766....13977......49670......231636.......798330
%C ...540...1646....8762....49670.....265724.....1388736......7232746
%C ..1320...4452...27102...231636....1388736....11083678.....63886624
%C ..3238..11050...83688...798330....7232746....63886624....560051658
%C ..7934..29506..258056..3709535...37562322...505270226...4901493530
%C .19450..74092..795746.12773958..195052754..2903085730..42904166068
%C .47672.195978.2453840.59358300.1012776710.22962813645.375457091278
%H R. H. Hardin, <a href="/A185467/b185467.txt">Table of n, a(n) for n = 1..684</a>
%e Some solutions for 4X3
%e ..0..1..1....0..1..0....1..1..1....1..0..0....1..0..0....1..1..0....1..1..1
%e ..1..1..1....1..1..1....1..0..1....0..1..0....1..1..1....1..0..1....1..1..0
%e ..1..1..0....0..1..0....0..1..0....0..1..1....1..0..1....1..1..1....0..1..0
%e ..0..1..0....1..1..1....1..1..0....1..0..0....1..1..1....1..0..1....0..0..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Jan 28 2011