The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185435 T(n,k)=Number of (n+2)X(k+2) 0..7 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order 10

%I

%S 6842284,284037544,284037544,8653394212,21536560306,8653394212,

%T 212298419684,1090205284029,1090205284029,212298419684,4370405405266,

%U 41910604337378,84722449466168,41910604337378,4370405405266

%N T(n,k)=Number of (n+2)X(k+2) 0..7 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order

%C Table starts

%C .............6842284..............284037544................8653394212

%C ...........284037544............21536560306.............1090205284029

%C ..........8653394212..........1090205284029............84722449466168

%C ........212298419684.........41910604337378..........4772160687307074

%C .......4370405405266.......1297535366114472........209290512833668811

%C ......77657199293322......33575010264022917.......7468756070356586903

%C ....1216284173329482.....745543958045415621.....223694029250999654095

%C ...17062128865116751...14492443009379677098....5755145891541173071730

%C ..217083576402029968..250496452202647761530..129520045203909930078682

%C .2530473438240068012.3898612401674733619729.2587203198419699686906895

%H R. H. Hardin, <a href="/A185435/b185435.txt">Table of n, a(n) for n = 1..83</a>

%H R. H. Hardin, <a href="/A185435/a185435.txt">Polynomials for columns 1-3</a>

%F Empirical: T(n,k) is a polynomial of degree 7k+112, for fixed k

%F Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order

%F Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.

%e Some solutions for 5X4

%e ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0

%e ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0

%e ..0..0..0..0....0..0..0..4....0..0..0..0....0..0..0..0....0..0..0..4

%e ..0..1..1..2....0..0..2..3....0..1..4..5....0..0..5..6....0..0..6..7

%e ..0..3..7..3....0..7..0..5....0..2..1..6....2..2..6..4....0..4..3..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, General degree formula intuited by _D. S. McNeil_ in the Sequence Fans Mailing List, Jan 27 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 02:09 EDT 2020. Contains 334758 sequences. (Running on oeis4.)