This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185415 Table of coefficients of a polynomial sequence of binomial type related to A080635. 8
 1, 0, 1, 2, 0, 1, 0, 8, 0, 1, 18, 0, 20, 0, 1, 0, 148, 0, 40, 0, 1, 378, 0, 658, 0, 70, 0, 1, 0, 5040, 0, 2128, 0, 112, 0, 1, 14562, 0, 33992, 0, 5628, 0, 168, 0, 1, 0, 277164, 0, 158480, 0, 12936, 0, 240, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Define a sequence of polynomials P(n,x) by means of the recurrence relation (1)... P(n+1,x) = x*{P(n,x-1)-P(n,x)+P(n,x+1)} with starting value P(0,x) = 1. The first few polynomials are P(1,x) = x P(2,x) = x^2 P(3,x) = x*(x^2+2), P(4,x) = x^2*(x^2+8), P(5,x) = x*(x^4+20*x^2+18). This triangle lists the coefficients of these polynomials in ascending powers of x. The triangle has links with A080635, which gives the number of ordered increasing 0-1-2 trees on n nodes (plane unary-binary trees in the notation of [BERGERON et al.]). The number of forests of k such trees on n nodes is given by the formula ... 1/k!*sum {j = 0..k} (-1)^(k-j)*binomial(k,j)*P(n,j). See A185422. We also have A080635(n) = P(n,1), which can be used to calculate the terms of A080635 - see A185416. For similarly defined polynomial sequences for other families of trees see A147309 and A185419. See also A185417. Exponential Riordan array [(3/2)(1-sqrt(3)*tan((pi+3*sqrt(3)*x)/6))/(-1+2*sin((pi-6*sqrt(3))/6)), log((1/2)(1+sqrt(3)*tan(sqrt(3)*x/2+pi/6))]. Production matrix is the exponential Riordan array [2*cosh(x)-1,x] beheaded. A185422*A008277^{-1}. REFERENCES F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48. LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of increasing trees FORMULA GENERATING FUNCTION The e.g.f. is (1)... F(x, t) = E(t)^x = Sum_{n >= 0} P(n, x) * t^n/n!, where E(t) = 1/2+sqrt(3)/2*tan[sqrt(3)/2*t+Pi/6] = 1 + t + t^2/2! + 3*t^3/3! + 9*t^4/4! + ... is the e.g.f. for A080635. ROW POLYNOMIALS One easily checks that ... d/dt(F(x,t)) = x*(F(x-1,t)-F(x,t)+F(x+1,t)) and hence the row generating polynomials P(n,x) satisfy the recurrence relation (2)... P(n+1,x) = x*{P(n,x-1)-P(n,x)+P(n,x+1)}. RELATIONS WITH OTHER SEQUENCES A080635(n) = P(n,1). A185422(n,k) = 1/k!*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*P(n,j). A185423(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*P(n,j). EXAMPLE Example Triangle begins n\k|....1......2......3......4......5......6......7......8 ========================================================== ..1|....1 ..2|....0......1 ..3|....2......0......1 ..4|....0......8......0......1 ..5|...18......0.....20......0......1 ..6|....0....148......0.....40......0......1.. ..7|..378......0....658......0.....70......0......1 ..8|....0...5040......0...2128......0....112......0......1 .. MAPLE P := proc(n, x) description 'polynomial sequence P(n, x)' if n = 0 return 1 else return x*(P(n-1, x-1)-P(n-1, x)+P(n-1, x+1)) end proc: with(PolynomialTools): for n from 1 to 10 CoefficientList(P(n, x), x); end do; MATHEMATICA p[0][x_] = 1; p[n_][x_] := p[n][x] = x*(p[n-1][x-1] - p[n-1][x] + p[n-1][x+1]) // Expand; row[n_] := CoefficientList[ p[n][x], x]; Table[row[n] // Rest, {n, 1, 10}] // Flatten (* Jean-François Alcover, Sep 11 2012 *) CROSSREFS Cf. A080635, A147309, A185417, A185419,  A185422, A185423. Sequence in context: A011328 A048277 A059419 * A049218 A212358 A154469 Adjacent sequences:  A185412 A185413 A185414 * A185416 A185417 A185418 KEYWORD nonn,easy,tabl AUTHOR Peter Bala, Jan 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 20:33 EST 2019. Contains 319310 sequences. (Running on oeis4.)