login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185412 Triangle T(n,m) read by rows: the matrix product A130595 * A156919. 1
1, 1, 1, 1, 8, 1, 1, 33, 33, 1, 1, 112, 378, 112, 1, 1, 353, 2938, 2938, 353, 1, 1, 1080, 18987, 44912, 18987, 1080, 1, 1, 3265, 111051, 520523, 520523, 111051, 3265, 1, 1, 9824, 612820, 5131040, 9998182, 5131040, 612820, 9824, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums are A165968(n+1).

Because A130595 is the inverse of the Pascal triangle A007318, we have A007318 *(this lower triangular matrix) = A156919.

LINKS

Table of n, a(n) for n=0..44.

FORMULA

G.f.: 1/(1+x-xy-2x/(1-3xy/(1+x-4x/(1-5xy/(1+x-6x/(1-7xy/(1+x-8x/(1-9xy/(1+ ... (continued fraction).

EXAMPLE

Triangle begins in row n=0 with columns 0 <= m <= n:

  1;

  1,    1;

  1,    8,      1;

  1,   33,     33,       1;

  1,  112,    378,     112,       1;

  1,  353,   2938,    2938,     353,       1;

  1, 1080,  18987,   44912,   18987,    1080,      1;

  1, 3265, 111051,  520523,  520523,  111051,   3265,    1;

  1, 9824, 612820, 5131040, 9998182, 5131040, 612820, 9824, 1;

MAPLE

A156919 := proc(n, m) if n=m then 1; elif m=0 then 2^n ; elif m<0 or m>n then 0; else 2*(m+1)*procname(n-1, m)+(2*n-2*m+1)*procname(n-1, m-1) ; end if; end proc:

A130595 := proc(n, m) (-1)^(n+m)*binomial(n, m) ; end proc:

A185412 := proc(n, m) local a, j; a := 0 ; for j from m to n do a := a+A130595(n, j)*A156919(j, m) ; end do: a ; end proc: # R. J. Mathar, Feb 03 2011

CROSSREFS

Sequence in context: A157208 A178347 A141686 * A157148 A220595 A154335

Adjacent sequences:  A185409 A185410 A185411 * A185413 A185414 A185415

KEYWORD

nonn,easy,tabl

AUTHOR

Paul Barry, Jan 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 18:58 EDT 2021. Contains 342932 sequences. (Running on oeis4.)