login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185399 As p runs through the primes, sequence gives denominator of Sum_{k=1..p-1} 1/k. 3
1, 2, 12, 20, 2520, 27720, 720720, 4084080, 5173168, 80313433200, 2329089562800, 13127595717600, 485721041551200, 2844937529085600, 1345655451257488800, 3099044504245996706400, 54749786241679275146400, 3230237388259077233637600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

T. D. Noe, Table of n, a(n) for n = 1..100

R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057, 2011

FORMULA

a(n) = denominator(sum((k+1)/(p-k-1), k=0..p-2)), where p = the n-th prime. - Gary Detlefs, Jan 12 2012

a(n) = numerator(H(p)/H(p-1)) - denominator(H(p)/H(p-1)), where p is the n-th prime and H(n) is the n-th harmonic number. - Gary Detlefs, Apr 21 2013

MAPLE

f2:=proc(n) local p;

p:=ithprime(n);

denom(add(1/i, i=1..p-1));

end proc;

[seq(f2(n), n=1..20)];

MATHEMATICA

nn = 20; sm = 0; t = Table[sm = sm + 1/k; Denominator[sm], {k, Prime[nn]}]; Table[t[[p - 1]], {p, Prime[Range[nn]]}] (* T. D. Noe, Apr 23 2013 *)

CROSSREFS

Cf. A001008, A002805 (numerators and denominators of harmonic numbers).

Cf. A061002, A193758.

Sequence in context: A174478 A145634 A145610 * A096108 A098941 A231875

Adjacent sequences:  A185396 A185397 A185398 * A185400 A185401 A185402

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 21 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 25 18:05 EDT 2017. Contains 292499 sequences.