%I #22 Apr 24 2016 13:16:07
%S 0,0,1,1,7,28,257,2933
%N Number of almost Hamiltonian simple graphs on n vertices.
%C Using the definition that a graph is "almost Hamiltonian" if its Hamiltonian length (length of a Hamiltonian walk) is one greater than the vertex count.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlmostHamiltonianGraph.html">Almost Hamiltonian Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianWalk.html">Hamiltonian Walk</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianNumber.html">Hamiltonian Number</a>
%K nonn,more,hard
%O 1,5
%A _Eric W. Weisstein_, Aug 29 2013