OFFSET
0,3
COMMENTS
a(n) is the number of ways to designate an element in each block of the set partitions of {1,2,...,n} and then designate a block.
Inverse binomial transform: b(n) = Sum (-1)^(n-k)*C(n,k)*a(k), k=0..n of A052512. - Alexander R. Povolotsky, Oct 01 2011
Number of pointed set partitions of pointed sets k[1...k...n] for any point k. - Gus Wiseman, Sep 27 2015
Exponential series reversal gives A207833 with alternating signs: 1, -4, 30, -332, 4880, ... . - Vladimir Reshetnikov, Aug 04 2019
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..535
Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
FORMULA
E.g.f.: A(A(x)) where A(x) = x*exp(x).
a(n) = Sum_{k=1..n} binomial(n,k)*k^(n-k+1). - Vladimir Kruchinin, Sep 23 2011
O.g.f.: Sum_{k>=1} k*x^k/(1 - k*x)^(k+1). - Ilya Gutkovskiy, Oct 09 2018
a(n) ~ exp(r*exp(r) + r - n) * n^(n + 1/2) / (r^(n - 1/2) * sqrt(1 + exp(r)*(1 + 3*r + r^2))), where r = 2*LambertW(exp(1/4)*sqrt(n)/2) - 1/2 + 1/(16*LambertW(exp(1/4)*sqrt(n)/2)^2 + LambertW(exp(1/4)*sqrt(n)/2) - 1). - Vaclav Kotesovec, Mar 21 2023
EXAMPLE
The a(2) = 4 pointed set partitions are 1[1[12]], 1[1[1]2[2]], 2[1[1]2[2]], 2[2[12]].
The a(3) = 18 pointed set partitions are 1[1[123]], 1[1[1]2[23]], 1[1[1]3[23]], 1[1[12]3[3]], 1[1[13]2[2]], 1[1[1]2[2]3[3]], 2[2[123]], 2[1[1]2[23]], 2[1[13]2[2]], 2[2[2]3[13]], 2[2[12]3[3]], 2[1[1]2[2]3[3]], 3[3[123]], 3[1[1]3[23]], 3[1[12]3[3]], 3[2[2]3[13]], 3[2[12]3[3]], 3[1[1]2[2]3[3]].
MATHEMATICA
nn=30; a=x Exp[x]; Range[0, nn]! CoefficientList[Series[a Exp[a], {x, 0, nn}], x]
PROG
(PARI) x='x+O('x^33); concat([0], Vec(serlaplace(x*exp(x)*exp(x*exp(x))))) \\ Joerg Arndt, Oct 04 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Feb 20 2011
STATUS
approved