%I #14 Jun 26 2017 01:22:59
%S 0,0,0,0,1,4,6,8,17,24,26,44,60,60,90,120,115,160,210,196,259,336,308,
%T 392,504,456,564,720,645,780,990,880,1045,1320,1166,1364,1716,1508,
%U 1742,2184,1911,2184,2730,2380,2695
%N Expansion of (x*(1+x)/(1-x^3))^4
%C Expansion of ((x+x^2)/(1-x^3))^k for k = 4 ; for k=1 see A011655, for k = 2 see A186731, for k = 3 see A185395.
%C Column k = 4 of triangle in A198295.
%H G. C. Greubel, <a href="/A185292/b185292.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: (x*(1+x)/(1-x^3))^4.
%t CoefficientList[Series[(x*(1 + x)/(1 - x^3))^4, {x, 0, 50}], x] (* _G. C. Greubel_, Jun 25 2017 *)
%o (PARI) x='x+O('x^50); concat([0,0,0,0], Vec((x*(1+x)/(1-x^3))^4)) \\ _G. C. Greubel_, Jun 25 2017
%Y Cf. A011655, A186731, A185395, A198295
%K easy,nonn
%O 0,6
%A _Philippe Deléham_, Jan 25 2012