login
A185281
a(n) = 2^n*A141316(n).
1
2, 0, 40, 800, 20288, 606400, 20971904, 825910528, 36572366848, 1802071653376, 97938520514560, 5826195568779264, 376854594173526016, 26349673341110894592, 1981251753509044977664, 159466640566146568814592, 13683137506507195162427392
OFFSET
1,1
LINKS
Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions arXiv:0806.3682 [math.CO], 2008. See Eq. 126.
Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions, Discrete Math. 310 (2010), no. 24, 3584-3606. See Eq. 126.
MATHEMATICA
terms = 17; f[t_] = 1 + Sum[(n+1)^(n-1) t^n, {n, 1, terms}];
A141316 = 1/t (f[t]-1)/(2f[t]^2-f[t])+O[t]^terms // CoefficientList[#, t]&;
A141316 * 2^Range[terms] (* Jean-François Alcover, Sep 22 2018, after Vaclav Kotesovec in A141316 *)
PROG
(PARI) lista(m) = {t = u + O(u^(m+1)); P = 1+sum(n=1, m, (n+1)^(n-1)*t^n); Q = (P-1)/(2*P^2-P); for (n=1, m, print1(2^n*polcoeff(Q, n, u), ", ")); } \\ Michel Marcus, Feb 12 2013
CROSSREFS
Cf. A141316.
Sequence in context: A214447 A357541 A230888 * A012445 A012450 A303491
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 25 2012
STATUS
approved