OFFSET
1,1
LINKS
Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions arXiv:0806.3682 [math.CO], 2008. See Eq. 126.
Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions, Discrete Math. 310 (2010), no. 24, 3584-3606. See Eq. 126.
MATHEMATICA
terms = 17; f[t_] = 1 + Sum[(n+1)^(n-1) t^n, {n, 1, terms}];
A141316 = 1/t (f[t]-1)/(2f[t]^2-f[t])+O[t]^terms // CoefficientList[#, t]&;
A141316 * 2^Range[terms] (* Jean-François Alcover, Sep 22 2018, after Vaclav Kotesovec in A141316 *)
PROG
(PARI) lista(m) = {t = u + O(u^(m+1)); P = 1+sum(n=1, m, (n+1)^(n-1)*t^n); Q = (P-1)/(2*P^2-P); for (n=1, m, print1(2^n*polcoeff(Q, n, u), ", ")); } \\ Michel Marcus, Feb 12 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 25 2012
STATUS
approved