login
Gauss's constant beta = 2*alpha*gamma + 3*alpha^2*h - log(2)*alpha/6, where alpha = 4/Pi^2 (A185199), gamma is Euler's constant (A001620) and h = -Zeta(1,2) (A073002).
1

%I #9 Jun 25 2017 23:03:57

%S 8,8,3,0,4,6,0,4,6,1,6,5,0,5,9,5,2,7,8,0,5,2,4,4,4,2,9,1,9,0,3,9,3,1,

%T 1,6,2,1,3,6,5,1,2,4,3,0,7,7,9,6,3,9,0,0,9,3,0,5,1,4,8,0,1,6,6,3,5,9,

%U 6,2,7,4,9,4,6,7,3,3,3,1,8,8,1,6,4,6,8,5,9,6,7,6,1,5,1,8,9,4

%N Gauss's constant beta = 2*alpha*gamma + 3*alpha^2*h - log(2)*alpha/6, where alpha = 4/Pi^2 (A185199), gamma is Euler's constant (A001620) and h = -Zeta(1,2) (A073002).

%D C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 358 (there is a typo in the definition: in the last line on page 358, "a" should be alpha).

%H G. C. Greubel, <a href="/A185266/b185266.txt">Table of n, a(n) for n = 0..5000</a>

%e .88304604616505952780524442919039311621365124307796390093051...

%t RealDigits[(8/Pi^2)*EulerGamma - (48/Pi^4)*Zeta'[2] - (2/3)*Log[2]/Pi^2, 10, 50][[1]] (* _G. C. Greubel_, Jun 25 2017 *)

%K cons,nonn

%O 0,1

%A _N. J. A. Sloane_, Feb 19 2011