The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185221 E.g.f. is solution to y = 1 + log(1 + x*y) in powers of x. 2
 1, 1, 1, -1, -10, -6, 294, 1350, -14624, -197568, 703800, 34790040, 100585968, -7259053296, -85604489712, 1588693382640, 46549054391040, -216669088277760, -24865626969568512, -159153249738896640, 13379663931502199040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..200 FORMULA E.g.f. is solution to y = y' * (1 - x + x*y). a(n) = sum(k=0..n, binomial(n+k+1,n) * sum(j=1..k+1, (-1)^(j) * binomial(k+1,j) * sum(i=1..n, (-1)^i * i! * binomial(j+i-1,j-1) * stirling1(n,i)))) / (n+1), n>0, a(0)=1. [Vladimir Kruchinin, Mar 29 2013] Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(LambertW(-1)) = 1.37455701074370748653... (see A238274). - Vaclav Kotesovec, Feb 24 2014 EXAMPLE y = 1 + x + 1/2*x^2 - 1/6*x^3 - 5/12*x^4 - 1/20*x^5 + 49/120*x^6 + 15/56*x^7 + ... PROG (PARI) {a(n) = local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = 1 + log(1 + x * A)); n! * polcoeff( A, n))} (Maxima) a(n):=if n=0 then 1 else sum(binomial(n+k+1, n) * sum((-1)^(j) * binomial(k+1, j) * sum((-1)^i * i! * binomial(j+i-1, j-1) * stirling1(n, i), i, 1, n), j, 1, k+1), k, 0, n) / (n+1); [Vladimir Kruchinin, Mar 29 2013] CROSSREFS Cf. A177380, A238274. Sequence in context: A234974 A248593 A038308 * A248153 A079166 A332980 Adjacent sequences:  A185218 A185219 A185220 * A185222 A185223 A185224 KEYWORD sign AUTHOR Michael Somos, Jan 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 13:21 EDT 2020. Contains 336198 sequences. (Running on oeis4.)