This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185180 Enumeration table T(n,k) by antidiagonals. The order of the list is symmetrical movement from center to edges diagonal. 6
 1, 2, 3, 5, 4, 6, 9, 7, 8, 10, 14, 12, 11, 13, 15, 20, 18, 16, 17, 19, 21, 27, 25, 23, 22, 24, 26, 28, 35, 33, 31, 29, 30, 32, 34, 36, 44, 42, 40, 38, 37, 39, 41, 43, 45, 54, 52, 50, 48, 46, 47, 49, 51, 53, 55, 65, 63, 61, 59, 57, 56, 58, 60, 62, 64, 66, 77, 75 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The natural numbers are grouped in chunks of 1, 2, 3, 4,... as (1), (2,3), (4,5,6), (7,8,9,10), etc and each group fills a diagonal in the table. The smallest number in a group is in A000124, the largest in A000217. Numbers in a group are placed on free spots as close as possible to the middle of the diagonal, given preference to the smaller row numbers in the table if there is a draw. The resulting array is apparently a transposed version of A064789 (if this was also written as an array). The order of the list table T(n,k): if n is odd: T (floor(n+1)/2,floor(n+1)/2), T(floor(n+1)/2-1,floor(n+1)/2+1), T(floor(n+1)/2+1,floor(n+1)/2-1),...T(1,n), T(n,1) if n is even: T(floor(n+1)/2-1,floor(n+1)/2+1), T(floor(n+1)/2+1,floor(n+1)/2-1),...T(1,n), T(n,1). Permutation of the natural numbers. a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. LINKS Boris Putievskiy, Rows n = 1..140 of triangle, flattened Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO] Eric W. Weisstein's World of Mathematics, Pairing functions FORMULA a(n) = (i*(i+1) + (j-1)*(j+2*i-4))/2, if j<=i, a(n)=(i*(i+1) + (j-1)*(j+2*i-4))/2 +2*(j-i)-1, if j>i, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor[(-1+sqrt(8*n-7))/2]. EXAMPLE The start of the sequence as table: 1....2....5....9...14...20...27 ... 3....4....7...12...18...25...33 ... 6....8...11...16...23...31...40 ... 10..13...17...22...29...38...48 ... 15..19...24...30...37...46...57 ... 21..26...32...39...47...56...67 ... 28..34...41...49...58...68...79 ... . . . The start of the sequence as triangle array read by rows: 1; 2,3; 5,4,6; 9,7,8,10; 14,12,11,13,15; 20,18,16,17,19,21; 27,25,23,22,24,26,28; . . . Row number k (k > 1) of the triangle contains a permutation of the set of k numbers from (k^2-k+2)/2, (k^2-k+2)/2 + 1 ,...up to (k^2+k-2)/2 + 1, namely (k^2+k-2)/2, (k^2+k-2)/2 -2,...,(k^2-k+2)/2, (k^2-k+2)/2 + 2,..., (k^2+k-2)/2-1, (k^2+k-2)/2+1. MATHEMATICA a[n_] := Module[{i, j, t}, i = n - t(t+1)/2; j = (t^2 + 3t + 4)/2 - n; t = Floor[(-1 + Sqrt[8n - 7])/2]; If[j <= i, (i(i+1) + (j-1)(j + 2i - 4))/2, (i(i+1) + (j-1)(j + 2i - 4))/2 + 2(j-i) - 1]]; Array[a, 68] (* Jean-François Alcover, Nov 21 2018, from Python *) PROG (Python) t=int((math.sqrt(8*n-7) - 1)/ 2) i=n-t*(t+1)/2 j=(t*t+3*t+4)/2-n if j<=i:    m=(i*(i+1) + (j-1)*(j+2*i-4))/2 else:    m=(i*(i+1) + (j-1)*(j+2*i-4))/2 +2*(j-i)-1 CROSSREFS Cf. A056011, A056023, A057027, A057028, A064578, A194981, A194982, A188568. Sequence in context: A097290 A279344 A316669 * A175107 A085181 A268129 Adjacent sequences:  A185177 A185178 A185179 * A185181 A185182 A185183 KEYWORD nonn,tabl AUTHOR Boris Putievskiy, Dec 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 04:18 EST 2019. Contains 320371 sequences. (Running on oeis4.)