The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185157 G.f. A(x) = sum(n>0, a(n)*x^n/(2*n-1)!) is the inverse function to x*Bernoulli(x). 1
 1, 3, 50, 2100, 166824, 21538440, 4115105280, 1091804313600, 384202115256960, 173201547619900800, 97349279409046828800, 66747386996603337024000, 54838533307770850530816000, 53185913922332495626882560000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS r(n)=sum(A191578(n,k)*k!/(n!*(n-k)!)*a(k)/(2*k-1)!,k,1,n)=0, n>1. r(1)=1. The central column of the Worpitzky triangle, a(n) = A028246(2n, n). Peter Luschny, Jul 17 2012 LINKS G. C. Greubel, Table of n, a(n) for n = 1..215 Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012. FORMULA a(n) = (n-1)!*stirling2(2*n-1,n). a(n) = (1/n)*sum{i=0..n}(-1)^(n-i)*binomial(n,i)*i^(2*n-1) - Peter Luschny, Jul 17 2012 O.g.f.: Sum_{n>=1} n^(2*n-2)*x^n/(1 + n^2*x)^n = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Jan 06 2018 MATHEMATICA a[n_] := (n-1)!*StirlingS2[2*n-1, n]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Feb 21 2013, from 1st formula *) PROG (Maxima) a(n)=(n-1)!*stirling2(2*n-1, n); (Sage) def A185157(n) :     return (1/n)*add((-1)^(n-i)*binomial(n, i)*i^(2*n-1) for i in (0..n)) [A185157(n) for n in (1..14)] # Peter Luschny, Jul 17 2012 CROSSREFS Cf. A028246, A191578. Sequence in context: A203239 A279970 A217767 * A078674 A071094 A144987 Adjacent sequences:  A185154 A185155 A185156 * A185158 A185159 A185160 KEYWORD nonn AUTHOR Vladimir Kruchinin, Jan 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 20:55 EDT 2020. Contains 337182 sequences. (Running on oeis4.)