%I #28 Apr 04 2024 10:13:49
%S 2,11,283,3319,48761,863231,17119607,393474749,10123457689,
%T 290522736467,8989787252711,304978405943587,11177758345241723,
%U 442074237951168419,18528729602926047181,830471669159330267737,39482554816041508293677,1990006276023222816118943,105148064265927977839670339,5857193485931947477684595711
%N a(n) = minimum pandigital prime in base n.
%C a(n) is the smallest prime whose base-n representation contains all digits (i.e., 0,1,...,n-1) at least once.
%H Chai Wah Wu, <a href="/A185122/b185122.txt">Table of n, a(n) for n = 2..386</a> (terms 2..100 from Per H. Lundow)
%H Chai Wah Wu, <a href="https://arxiv.org/abs/2403.20304">Pandigital and penholodigital numbers</a>, arXiv:2403.20304 [math.GM], 2024. See p. 3.
%e The corresponding base-b representations are:
%e 2 10
%e 3 102
%e 4 10123
%e 5 101234
%e 6 1013425
%e 7 10223465
%e 8 101234567
%e 9 1012346785
%e 10 10123457689
%e 11 1022345689a7
%e 12 101234568a79b
%e 13 10123456789abc
%e 14 10123456789cdab
%e 15 10223456789adbce
%e ...
%o (Python)
%o from math import gcd
%o from itertools import count
%o from sympy import nextprime
%o from sympy.ntheory import digits
%o def A185122(n):
%o m = n
%o j = 0
%o if n > 3:
%o for j in range(1,n):
%o if gcd((n*(n-1)>>1)+j,n-1) == 1:
%o break
%o if j == 0:
%o for i in range(2,n):
%o m = n*m+i
%o elif j == 1:
%o for i in range(1,n):
%o m = n*m+i
%o else:
%o for i in range(2,1+j):
%o m = n*m+i
%o for i in range(j,n):
%o m = n*m+i
%o m -= 1
%o while True:
%o if len(set(digits(m:=nextprime(m),n)[1:]))==n:
%o return m # _Chai Wah Wu_, Mar 12 2024
%K nonn,base
%O 2,1
%A _Per H. Lundow_, Jan 16 2012