login
A185083
Partitions of 2*n into parts not congruent to 0, +-2, +-12, +-14, 16 (mod 32).
3
1, 1, 3, 6, 11, 20, 34, 56, 91, 143, 220, 334, 498, 732, 1064, 1528, 2171, 3058, 4269, 5910, 8124, 11088, 15034, 20264, 27154, 36189, 47988, 63324, 83176, 108780, 141672, 183776, 237499, 305812, 392406, 501856, 639781, 813108, 1030354, 1301928, 1640572
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (phi(q^2) / phi(-q) + 1) / 2 in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 16 sequence [ 1, 2, 3, 2, 3, 0, 1, 0, 1, 0, 3, 2, 3, 2, 1, 0, ...].
2 * a(n) = A208850(n) unless n = 0. a(n + 1) = A208851(n). a(n) = A115671(2*n).
EXAMPLE
1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 20*x^5 + 34*x^6 + 56*x^7 + 91*x^8 + ...
MATHEMATICA
f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A185083[n_] := SeriesCoefficient[(1/2)*(f[x^2, x^2]/f[-x, -x] + 1), {x, 0, n}]; Table[A185083[n], {n, 0, 50}] (* G. C. Greubel, Jun 22 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)) + 1) / 2, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 02 2012
STATUS
approved