OFFSET
1,3
COMMENTS
If one plays with p(n,n) unordered partitions, one gets the same number and length of periods.
REFERENCES
R. Baumann, Computer-Knobelei, LOGIN, 4 (1987), pages ?.
H. R. Halder and W. Heise, Einführung in Kombinatorik, Hanser Verlag, Munich, 1976, pp. 75ff.
FORMULA
a((k^2+k-2)/2-j)=k^2-3-(k+1)*j with 0<=j<=(k-4) div 2 and 4<=k.
a((k^2+k+2)/2+j)=k^2-1-k*j with 0<=j<=(k-5) div 2 and 5<=k.
a((k^2+2*k-2+k mod 2)/2+j)=(k^2+4*k-2+k mod 2)/2+j with 0<=j<=2-k mod 2 and 4<=k.
a(T(k))=k^2-1 with 1<= k for all triangular numbers T(k).
EXAMPLE
For k=6: a(19)=26; a(20)=3; a(21)=35; a(22)=35; a(23)=29; a(24)=30; a(25)=31.
For n=4: (1+1+1+1)->(4)->(3+1)->(2+2)->(1+1+2)->(1+3)--> a(4)=5 steps.
For n=5: (1+1+1+1+1)->(5)->(4+1)->(3+2)->(2+1+2)->(1+1+3)->(2+3)->(1+2+2)--> a(5)=7 steps.
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Weisenhorn, Mar 28 2011
EXTENSIONS
Partially edited by N. J. A. Sloane, Apr 08 2011
STATUS
approved