OFFSET
0,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..450
FORMULA
a(n) = Sum_{k>=0} k*A186769(n,k).
E.g.f.: (1/2) * (2*(1-cosh(z)) - log(1-z^2))/(1-z).
a(n) ~ n!/2 * (log(n/2) - 1/exp(1) + 2 - exp(1) + gamma), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 05 2013
a(n) = (n!*H(n)-2F0(1,-n;;-1) + (-1)^(n+1)*2F0(1,-n;;1)+n!*(2+(-1)^n*LerchPhi(-1,1,n+1)-log(2)))/2, where H(n) is the n-th harmonic number. - Benedict W. J. Irwin, May 30 2016
EXAMPLE
a(4) = 5 because the only permutations of {1,2,3,4} having nonincreasing even cycles are (1243), (1324), (1342), (1423), and (1432).
MAPLE
g := (1/2*(2*(1-cosh(z))-ln(1-z^2)))/(1-z): gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 21);
MATHEMATICA
With[{nn=30}, CoefficientList[Series[1/2(2(1-Cosh[x])-Log[1-x^2])/(1-x), {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Oct 22 2011 *)
Table[(n! HarmonicNumber[n] - HypergeometricPFQ[{1, -n}, {}, -1] + (-1)^(n + 1) HypergeometricPFQ[{1, -n}, {}, 1] + n! (2 + (-1)^n LerchPhi[-1, 1, 1 + n] - Log[2]))/2, {n, 0, 20}] (* Benedict W. J. Irwin, May 30 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 27 2011
STATUS
approved