login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184948 Triangle read by rows: SM(n,m) is the number of symmetric 0-1 matrices of order n such that the total number of 1's is m (n >= 1, 0 <= m <= n^2). 3
1, 1, 1, 2, 2, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 12, 28, 52, 84, 116, 140, 150, 140, 116, 84, 52, 28, 12, 4, 1, 1, 5, 20, 60, 150, 326, 620, 1060, 1635, 2295, 2952, 3480, 3780, 3780, 3480, 2952, 2295, 1635, 1060, 620, 326, 150, 60, 20, 5, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Alois P. Heinz, Rows n = 1..31, flattened

P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.

FORMULA

SM(n,m) is the sum of binomial(n,k) * binomial(n*(n-1)/2,(m-k)/2) over those k with the same parity as m. To see this consider that k is the number of 1s on the diagonal.

From Robert Israel, Feb 02 2011: (Start)

According to Maple,

> simplify(sum(binomial(n,2*j)*binomial(r,M-j),j=0..M)) assuming posint;

binomial(r,M)*hypergeom([-M, -1/2*n, 1/2-1/2*n],[1/2, r-M+1],-1)

> simplify(sum(binomial(n,2*k+1)*binomial(r,M-k),k=0..M)) assuming posint;

n*binomial(r,M)*hypergeom([-M, 1-1/2*n, 1/2-1/2*n],[3/2, r-M+1],-1)

If m is even you want the first formula with r=n*(n-1)/2 and M=m/2.

If m is odd the second formula with r=n*(n-1)/2 and M=(m+1)/2.

Thus for n=5 and m=6,

    binomial(10,3)*hypergeom([-3,-5/2,-2],[1/2,8],-1) = 620

and for n=5 and m=5,

    5*binomial(10,3)*hypergeom([-3, -3/2, -2],[3/2, 8],-1) = 1060. (End)

G.f. for row n: (1+x)^n*(1+x^2)^(n(n-1)/2 for n>=1. - Paul D. Hanna, Feb 03 2011

G.f.: A(x,y) = Sum_{n>=1} x^n*(1+y)^n*Product_{k=1..n} (1-x(1+y)(1+y^2)^(2k-2))/(1-x(1+y)(1+y^2)^(2k-1)) due to a q-series identity. - Paul D. Hanna, Feb 03 2011

Sum_{k>=0..n^2} k*SM(n,k)  =  n^2/2 * 2^(n(n+1)/2).

SM(n,m) = Sum_{k=0..floor(m/2)} C(C(n,2),k)*C(n,m-2*k), from equation (11) in the Cameron et al., reference. - L. Edson Jeffery, Feb 29 2012

EXAMPLE

Triangle begins:

SM(1, m) = 1, 1

SM(2, m) = 1, 2, 2, 2, 1

SM(3, m) = 1, 3, 6, 10, 12, 12, 10, 6, 3, 1

SM(4, m) = 1, 4, 12, 28, 52, 84, 116, 140, 150, 140, 116, 84, 52, 28, 12, 4, 1

SM(5, m) = 1, 5, 20, 60, 150, 326, 620, 1060, 1635, 2295, 2952, 3480, 3780,  3780, 3480, 2952, 2295, 1635, 1060, 620, 326, 150, 60, 20, 5, 1

...

PROG

(PARI) {SM(n, k)=polcoeff((1+x^2)^(n*(n-1)/2)*(1+x)^n, k)} \\ Paul D. Hanna

(PARI) {SM(n, k)=local(A); A=sum(m=1, n, x^m*(1+y)^m*prod(k=1, m, (1-x*(1+y)*(1+y^2)^(2*k-2))/(1-x*(1+y)*(1+y^2)^(2*k-1)+x*O(x^n)))); polcoeff(polcoeff(A, n, x), k, y)} \\ Paul D. Hanna

CROSSREFS

Row sums give A006125(n+1).

Cf. A262666.

Sequence in context: A131823 A089722 A172356 * A242775 A079562 A199803

Adjacent sequences:  A184945 A184946 A184947 * A184949 A184950 A184951

KEYWORD

nonn,tabf

AUTHOR

N. J. A. Sloane, Feb 03 2011, based on a posting to the Sequence Fans Mailing List by Brendan McKay, Feb 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 17 19:53 EST 2017. Contains 294834 sequences.