This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184948 Triangle read by rows: SM(n,m) is the number of symmetric 0-1 matrices of order n such that the total number of 1's is m (n >= 1, 0 <= m <= n^2). 3
 1, 1, 1, 2, 2, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 12, 28, 52, 84, 116, 140, 150, 140, 116, 84, 52, 28, 12, 4, 1, 1, 5, 20, 60, 150, 326, 620, 1060, 1635, 2295, 2952, 3480, 3780, 3780, 3480, 2952, 2295, 1635, 1060, 620, 326, 150, 60, 20, 5, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Alois P. Heinz, Rows n = 1..31, flattened P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11. FORMULA SM(n,m) is the sum of binomial(n,k) * binomial(n*(n-1)/2,(m-k)/2) over those k with the same parity as m. To see this consider that k is the number of 1s on the diagonal. From Robert Israel, Feb 02 2011: (Start) According to Maple, > simplify(sum(binomial(n,2*j)*binomial(r,M-j),j=0..M)) assuming posint; binomial(r,M)*hypergeom([-M, -1/2*n, 1/2-1/2*n],[1/2, r-M+1],-1) > simplify(sum(binomial(n,2*k+1)*binomial(r,M-k),k=0..M)) assuming posint; n*binomial(r,M)*hypergeom([-M, 1-1/2*n, 1/2-1/2*n],[3/2, r-M+1],-1) If m is even you want the first formula with r=n*(n-1)/2 and M=m/2. If m is odd the second formula with r=n*(n-1)/2 and M=(m+1)/2. Thus for n=5 and m=6,     binomial(10,3)*hypergeom([-3,-5/2,-2],[1/2,8],-1) = 620 and for n=5 and m=5,     5*binomial(10,3)*hypergeom([-3, -3/2, -2],[3/2, 8],-1) = 1060. (End) G.f. for row n: (1+x)^n*(1+x^2)^(n(n-1)/2 for n>=1. - Paul D. Hanna, Feb 03 2011 G.f.: A(x,y) = Sum_{n>=1} x^n*(1+y)^n*Product_{k=1..n} (1-x(1+y)(1+y^2)^(2k-2))/(1-x(1+y)(1+y^2)^(2k-1)) due to a q-series identity. - Paul D. Hanna, Feb 03 2011 Sum_{k>=0..n^2} k*SM(n,k)  =  n^2/2 * 2^(n(n+1)/2). SM(n,m) = Sum_{k=0..floor(m/2)} C(C(n,2),k)*C(n,m-2*k), from equation (11) in the Cameron et al., reference. - L. Edson Jeffery, Feb 29 2012 EXAMPLE Triangle begins: SM(1, m) = 1, 1 SM(2, m) = 1, 2, 2, 2, 1 SM(3, m) = 1, 3, 6, 10, 12, 12, 10, 6, 3, 1 SM(4, m) = 1, 4, 12, 28, 52, 84, 116, 140, 150, 140, 116, 84, 52, 28, 12, 4, 1 SM(5, m) = 1, 5, 20, 60, 150, 326, 620, 1060, 1635, 2295, 2952, 3480, 3780,  3780, 3480, 2952, 2295, 1635, 1060, 620, 326, 150, 60, 20, 5, 1 ... PROG (PARI) {SM(n, k)=polcoeff((1+x^2)^(n*(n-1)/2)*(1+x)^n, k)} \\ Paul D. Hanna (PARI) {SM(n, k)=local(A); A=sum(m=1, n, x^m*(1+y)^m*prod(k=1, m, (1-x*(1+y)*(1+y^2)^(2*k-2))/(1-x*(1+y)*(1+y^2)^(2*k-1)+x*O(x^n)))); polcoeff(polcoeff(A, n, x), k, y)} \\ Paul D. Hanna CROSSREFS Row sums give A006125(n+1). Cf. A262666. Sequence in context: A131823 A089722 A172356 * A242775 A079562 A199803 Adjacent sequences:  A184945 A184946 A184947 * A184949 A184950 A184951 KEYWORD nonn,tabf AUTHOR N. J. A. Sloane, Feb 03 2011, based on a posting to the Sequence Fans Mailing List by Brendan McKay, Feb 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.