login
A184939
From the base sequence of the positive integers, keep the first two, remove the next three, keep the next five, remove the next seven, ..., block lengths determined by the prime numbers.
1
1, 2, 6, 7, 8, 9, 10, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 130, 131, 132
OFFSET
1,2
COMMENTS
Accept 1st prime, reject 2nd prime, accept 3rd prime, reject 4th prime, ... starting with natural numbers A000027. First string of consecutive values ends with 2, second such string ends with 10 = 2+3+5, 3rd such string ends with 28 = 2+3+5+7+11, namely A007504(2k+1).
LINKS
EXAMPLE
In parentheses the blocks of integers removed: 1 2 (3 4 5) 6 7 8 9 10 (11 12 13 14 15 16 17) 18 19 20 21 22 23 24 25 26 27 28 (29 30 ...).
MAPLE
L := [] ; p := 2 ; ptr := 1 ;
while p < 40 do
L := [op(L), seq(j, j=ptr..ptr+p-1)] ; ptr := ptr+p ; p := nextprime(p) ;
ptr := ptr+p ; p := nextprime(p) ;
end do:
L ; # R. J. Mathar, Feb 08 2011
MATHEMATICA
Module[{nn=20, t}, t=Total[Prime[Range[nn]]]; Take[TakeList[Range[t], Prime[ Range[nn]]], {1, nn, 2}]]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 04 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Feb 02 2011
STATUS
approved