login
A184937
a(n) = binomial(2n, n) + binomial(2n-1, n-1) + binomial(2n+1, n).
1
3, 6, 19, 65, 231, 840, 3102, 11583, 43615, 165308, 629850, 2410226, 9256534, 35659200, 137733660, 533216475, 2068423695, 8037976980, 31285334850, 121941160110, 475898730450
OFFSET
0,1
LINKS
FORMULA
a(n) = A000984(n) + A088218(n) + A088218(n+1). - R. J. Mathar, Feb 04 2011
From Robert Israel, Jan 05 2019: (Start)
G.f.: 1/2 - 1/(2*x) + (1+3*x)/(2*x*sqrt(1-4*x)).
(6 + 12*n)*a(n) + (7 + n)*a(1 + n) + (-3 - n)*a(n + 2) = 0. (End)
MAPLE
A184937 := proc(n) binomial(2*n, n)+binomial(2*n-1, n-1)+binomial(2*n+1, n) ; end proc: # R. J. Mathar, Jan 04 2011
MATHEMATICA
Table[Binomial[2 n, n] + Binomial[2 n - 1, n - 1] + Binomial[2 n + 1, n], {n, 0, 20}]
CROSSREFS
Sequence in context: A024607 A186022 A058818 * A215817 A365119 A269306
KEYWORD
nonn
AUTHOR
Jon Perry, Feb 02 2011
STATUS
approved