login
A184906
n+floor(nr/t)+floor(ns/t), where r=2^(1/2), s=2^(1/3), t=2^(1/5).
3
3, 6, 9, 12, 16, 19, 22, 25, 29, 32, 36, 39, 43, 46, 49, 52, 55, 59, 62, 65, 69, 73, 76, 79, 82, 86, 89, 92, 95, 98, 103, 106, 109, 112, 116, 119, 122, 125, 129, 132, 135, 139, 142, 146, 149, 152, 155, 159, 162, 165, 168, 173, 176, 179, 182, 185, 189, 192, 195, 198, 202, 206, 209, 212, 216, 219, 222, 225, 228, 232, 235, 238, 242, 246, 249, 252, 255, 259, 262, 265, 268, 271, 276, 279, 282, 285, 289, 292, 295, 298, 302, 305, 309, 312, 315, 319, 322, 325, 328, 332, 335, 338, 341, 346, 349, 352, 355, 358, 362, 365, 368, 371, 375, 379, 382, 385, 389, 392, 395, 398
OFFSET
1,1
COMMENTS
The sequences A184904, A184905, A184906, partition the positive integers:
A184904: 1,4,7,10,13,15,18,21,24,26,...
A184905: 2,5,8,11,14,17,20,23,27,30,...
A184906: 3,6,9,12,16,19,22,25,29,32,...
See A184812.
MATHEMATICA
r=2^(1/2); s=2^(1/3); t=2^(1/5);
a[n_]:=n+Floor[n*s/r]+Floor[n*t/r];
b[n_]:=n+Floor[n*r/s]+Floor[n*t/s];
c[n_]:=n+Floor[n*r/t]+Floor[n*s/t];
Table[a[n], {n, 1, 120}] (* A184904 *)
Table[b[n], {n, 1, 120}] (* A184905 *)
Table[c[n], {n, 1, 120}] (* A184906 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 25 2011
STATUS
approved