login
A184887
a(n) = (8^n/n!^2) * Product_{k=0..n-1} (16k+3)*(16k+5).
2
1, 120, 95760, 110230400, 148976385600, 220389705801216, 345522083206128640, 564061275098462085120, 948680557056225919411200, 1632480132897839426558156800, 2860496988068910156792264671232
OFFSET
0,2
LINKS
FORMULA
Self-convolution yields Sum_{k=0..n} a(n-k)*a(k) = A184888(n) where: A184888(n) = C(2n,n) * (8^n/n!^2)*Product_{k=0..n-1} (8k+3)*(8k+5).
EXAMPLE
G.f.: A(x) = 1 + 120*x + 95760*x^2 + 110230400*x^3 +...
A(x)^2 = 1 + 240*x + 205920*x^2 + 243443200*x^3 +...+ A184888(n)*x^n +...
MATHEMATICA
FullSimplify[Table[2^(11*n) * Gamma[n+3/16] * Gamma[n+5/16] / (Gamma[n+1]^2 * Gamma[3/16] * Gamma[5/16]), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 03 2014 *)
PROG
(PARI) {a(n)=(8^n/n!^2)*prod(k=0, n-1, (16*k+3)*(16*k+5))}
CROSSREFS
Sequence in context: A058528 A001421 A107446 * A279579 A159735 A157879
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2011
STATUS
approved