login
A184882
a(n)=1-4*n-4*n^2.
2
1, -7, -23, -47, -79, -119, -167, -223, -287, -359, -439, -527, -623, -727, -839, -959, -1087, -1223, -1367, -1519, -1679, -1847, -2023, -2207, -2399, -2599, -2807, -3023, -3247, -3479, -3719, -3967, -4223, -4487, -4759, -5039, -5327, -5623
OFFSET
0,2
COMMENTS
Hankel transform of A184881.
FORMULA
G.f.: (1-10*x+x^2)/(1-x)^3.
a(n)=+3*a(n-1)-3*a(n-2)+1*a(n-3) for n>=3.
a(0)=1, a(n)=a(n-1)-8*n. - Vincenzo Librandi, Jan 25 2011
MATHEMATICA
Table[1-4n-4n^2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, -7, -23}, 50] (* Harvey P. Dale, Feb 21 2014 *)
PROG
(Magma) [1-4*n-4*n^2: n in [0..60]]; // Vincenzo Librandi, Feb 23 2014
(PARI) a(n)=1-4*n-4*n^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A139035 A002146 A336092 * A073577 A348230 A139830
KEYWORD
sign,easy
AUTHOR
Paul Barry, Jan 24 2011
STATUS
approved