%I #12 Jan 30 2018 15:56:48
%S 2,5,19,29,43,53,67,73,97,101,131,149,179,193,227,241,251,271,347,353,
%T 367,401,439,449,463,487,521,541,599,613,647,661,691,719,739,743,773,
%U 787,797,811,821,859,883,937,941,947,971,1009,1019,1033,1087,1091,1163,1193,1217,1231,1279,1289,1303,1361,1367,1381,1429,1439,1453,1483,1487,1511,1531,1559,1579,1613,1627,1637,1699,1709,1733,1753,1777,1787,1801,1811,1873,1907,1931,1951,1979,1999
%N Primes of the form floor((k-1/2)*(2+sqrt(2))+1/2); i.e., primes in A063957.
%C See "conjecture generalized" at A184774.
%H G. C. Greubel, <a href="/A184868/b184868.txt">Table of n, a(n) for n = 1..10000</a>
%t a[n_]:=Floor [(n-1/2)*(2+2^(1/2))+1/2];
%t Table[a[n],{n,1,120}] (* A063957 *)
%t t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1
%t t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2
%t t3={}; Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,400}];t3
%t (* Lists t1, t2, t3 match A184868, A184869, A184870. *)
%o (PARI) lista(nn) = for (k=1, nn, if (isprime(p=floor((k-1/2)*(2+sqrt(2))+1/2)), print1(p, ", "))); \\ _Michel Marcus_, Jan 30 2018
%Y Cf. A184774, A184869, A184870.
%K nonn
%O 1,1
%A _Clark Kimberling_, Jan 23 2011